We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Portable Instrument Combines Fluorescence Reader and Microfluidic Chip for Detection of SARS-CoV-2 in Saliva

By LabMedica International staff writers
Posted on 23 Feb 2022
Print article
Image: Small form factor flow virometer for SARS-CoV-2 (Photo courtesy of ICFO)
Image: Small form factor flow virometer for SARS-CoV-2 (Photo courtesy of ICFO)

A portable, low-cost instrument combines a fluorescence reader and microfluidic chip to enable fast, sensitive detection of COVID-19 in saliva samples.

Researchers from the Institute of Photonic Sciences (ICFO Castelldefels, Spain) and IrsiCaixa AIDS Research Institute (Badalona, Spain) have demonstrated a new low-cost portable instrument that manipulates light and fluid for fast and reliable detection of SARS-CoV-2 in saliva samples. Although still in the research stage, the new device could offer a higher sensitivity than today’s COVID-19 rapid antigen tests while also being faster and more cost-effective than PCR tests.

The new instrument, which the researchers call a flow virometry reader, is based on a modification of flow cytometry, a laser-based technique that uses fluorescence to count or analyze cells. Rather than counting cells, the new device detects light emission from fluorescent antibodies that bind to specific viral particles. It can offer quantitative results in less than 30 minutes using an instrument that is about the size of a shoebox. Also, non-specialist users can easily operate the device, and testing can be carried out anywhere since no specialized laboratory is required. To run a test, a saliva sample is introduced in a solution that contains fluorescent antibodies that will attach to SARS-CoV-2 particles. The sample is then processed by the flow virometry reader, which uses a single microfluidic channel to pass the sample through a laser illumination and detection setup. If viral particles are present in the solution, they change the sample’s fluorescence in a detectable way, providing information that can be used to calculate the viral concentration.

The researchers calibrated the new instrument by determining its detection limits using a set of prepared saliva samples containing a known amount of virus. They then evaluated the performance of the system for detecting SARS-CoV-2 in clinical samples. For this, they conducted a blind test of frozen saliva samples from more than 50 COVID-19 positive and uninfected individuals. The instrument reliably detected 31 out of 34 COVID-19 positive patient samples and 18 out of 20 SARS-CoV-2 negative samples, which had been previously analyzed using PCR testing.

While the proposed technology has the potential to replace or complement PCR tests, more experiments are necessary to clinically assess the similarity of the two methods. The researchers are now working to develop an integrated flow virometry reader for simultaneous SARS-CoV-2 antigen and antibody analysis. Such a testing device could identify active infections as well as provide information on the immune response to a previous infection or vaccination. This will allow fast checking of vaccine efficiency and help to determine whether additional vaccination boosters are needed. Before moving into the commercialization phase, the researchers will perform a series of additional tests to increase the statistics and the specificity of the device.

“Our instrument, which requires just a few drops of saliva, would be useful for mass screening in settings such as restaurants, schools, offices, theatres and cinemas,” said researcher Alfredo Ongaro from ICFO. “What’s more, the technology can be easily adapted to detect markers for other pathogens, including those that may be involved in future outbreaks.”

Related Links:
ICFO 
IrsiCaixa AIDS Research Institute 

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.