Microfluidic Chip Enables Simultaneous Diagnosis of COVID-19 and Influenza Diseases
By LabMedica International staff writers Posted on 06 Jan 2022 |

A research team has developed a microfluidic chip that is capable of simultaneous diagnosis of COVID-19 and influenza diseases, by applying the microfluidic chip technologies.
Researchers from the Toyohashi University of Technology (Toyohashi, Japan) and Jikei University School of Medicine (Tokyo, Japan) built a theoretical model that manipulates microfluidic flow with an extremely simple microchannel design and has established an optimal design theory for microfluidic chips. Further, by using the diagnostic device they developed, they performed genetic amplification experiments on four types of infectious diseases, including COVID-19, and demonstrated that multiplexed rapid and simultaneous diagnosis was possible within 30 minutes. The device can be utilized for genetic diagnoses in a range of fields (e.g. agriculture, farming, and fisheries industries, food industry, and health and medical care), not only human infectious diseases. The diagnostic technology can enable anyone, anywhere, any time to detect viral diseases in a rapid, simple, and low-cost way.
The LAMP (Loop-Mediated Isothermal Amplification) method is a genetic test technology. This simple test method does not require an expensive accurate temperature control equipment, etc., in contrast to the widespread PCR test, and can be conducted on site because it allows genetic amplification at a constant temperature for a constant length of time (60 to 65℃, 30 minutes to an hour or so). However, to diagnose multiple types of viruses, the conventional LAMP method entails considerable effort to perform as many preparations of samples and reagents and genetic amplification reactions as the number of analytes, requiring expert knowledge and skills.
Therefore, the research team developed a polydimethylsiloxane (PDMS)-based multiplexed genetic diagnostic device (size: 45mm x 25mm, reaction chamber: 3µL x 5 pieces) by applying the microfluidic chip technology. It autonomously, equally, and accurately dispenses samples and reagent into an array of reaction chambers simply by introducing the liquid, a mixture of an extremely small amount of sample extracted from the analytes and a reagent, into the diagnostic device. By heating the device in warm water (at 60 to 65℃, for 30 minutes to an hour or so), it is capable of simultaneous diagnosis of multiple types of viruses with only one operation (one work process per sample).
The genetic diagnosis result showed that four types of infectious diseases including the COVID-19 (seasonal influenza A, SARS, and influenza H1N1 pdm09) were successfully detected with this diagnosis device. Only the reaction chamber that reacted when a sample containing the gene of each virus was introduced turned sky blue (denoting a positive reaction) after 30 minutes, which means that visual detection is possible.
In addition, to support on-site diagnoses, the team has developed a smartphone app, which automatically diagnoses the reaction as positive or negative based on photographs taken with a smartphone camera. The diagnosis device is capable of easy automatic test result diagnosis (positive or negative), by placing the device after LAMP reaction in a simple LED illumination device and taking photographs with a smartphone. As a result, it is expected that anyone will be able to easily perform the test, anywhere and anytime. In the future, aiming to commercialize the diagnosis device, the research team will develop devices capable of multiplexed rapid diagnosis of variants of the COVID-19 and human infectious diseases for a safe life during and after the COVID-19 pandemic.
Related Links:
Toyohashi University of Technology
Jikei University School of Medicine
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
New Genetic Tool Analyzes Umbilical Cord Blood to Predict Future Disease
Children are experiencing metabolic problems at increasingly younger ages, placing them at higher risk for serious health issues later in life. There is a growing need to identify this risk from birth... Read more
Spinal Fluid Biomarker for Parkinson’s Disease Offers Early and Accurate Diagnosis
Parkinson’s disease is a neurodegenerative condition typically diagnosed at an advanced stage based on clinical symptoms, primarily motor disorders. However, by this time, the brain has already undergone... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more