We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Testing for Specific Genetic Biomarkers Could Diagnose SARS-CoV-2 Infection and Predict COVID-19 Severity

By LabMedica International staff writers
Posted on 27 Oct 2021
Illustration
Illustration

Scientists have discovered specific genetic biomarkers that not only show who is infected with COVID-19, but also offer insights into how severe the disease might be, thus filling a major diagnostic gap.

The new study by scientists at the University of Colorado School of Medicine (Aurora, CO, USA) suggests that specific signals from a process called DNA methylation varies between those infected and those not infected with SARS-CoV-2. And they can indicate the severity of the disease even in the early stages. DNA methylation, critical in how cells function, is an epigenetic signaling tool that cells use to turn genes off. Any mistakes in the process can trigger a variety of disease. The researchers believe that paying attention to these signals could help fill a needed gap in the current world of COVID testing.

Most COVID-19 antigen or rapid tests are dependent on viral strains and can carry high false negative rates. They do not predict if the virus is viable and replicating, nor do they predict clinical outcomes. A pre-symptomatic patient may test negative for the SARS-CoV-2 virus while patients who have recovered may still test positive despite no longer being infectious. The researchers did not know of any test that can predict the clinical course of COVID-19.

With that in mind, they analyzed the epigenome in blood samples from people with and without COVID-19. They did this by customizing a tool from Illumina called the Infinium Methylation EPIC array to enhance immune response detection. Researchers then profiled peripheral blood samples from 164 COVID-19 patients and 296 control patients. The peripheral blood DNA samples were collected from patients seen at UC Health and tested for SARS-CoV-2 epigenetic signatures starting March 1, 2020. The researchers discovered specific genetic markers of SARS-CoV-2 infection along with indications of how severe the disease might be. According to the researchers, the findings could ultimately lead to a new and more accurate way to test for COVID-19.

“I think this study is a tremendous proof-of-concept in the realm of COVID-19 testing, one that can be applied to other diseases,” said the study’s lead author, Kathleen Barnes, PhD, professor at the CU School of Medicine. “It’s a major move forward in the world of precision medicine.”

“We are exploring how this platform could add value to the COVID diagnostic world,” she said. “We think it adds value to knowing what patients develop more serious disease. This could tell you if you could ride out the infection or if it is likely to get worse.”

Related Links:
University of Colorado School of Medicine 

Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
ESR Analyzer
TEST1 2.0

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more