LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Nanomechanical Technique for Fast, One-Step, Immune-Affinity Tests Rapidly Quantifies Transmissibility of COVID-19 Variants

By LabMedica International staff writers
Posted on 14 Oct 2021
Print article
Image: New Nanomechanical Technique for Fast, One-Step, Immune-Affinity Tests Rapidly Quantifies Transmissibility of COVID-19 Variants (Photo courtesy of Trinity College Dublin)
Image: New Nanomechanical Technique for Fast, One-Step, Immune-Affinity Tests Rapidly Quantifies Transmissibility of COVID-19 Variants (Photo courtesy of Trinity College Dublin)

A team of researchers has developed a new nanomechanical technique for fast, one-step, immune-affinity tests, which can quantify the immune response induced by different COVID-19 variants in serum.

The technique developed by researchers at Trinity College Dublin (Dublin, Ireland) provides a new tool for tracking infection immunity over time and for analysing new vaccine candidates. The team’s specific quantitative assay enables direct classification of variant-binding properties for screening emerging variants. The major advantage of the newly developed technique with respect to (existing, commonly used) ELISA tests is that while it is equally sensitive – with added single amino-acid resolution – and able to directly detect multiple variants by in situ differential analysis, it can also do so in a mere fraction of the time.

The researchers focused on COVID-19 variants of concern and their generated humoral immune response. Humoral immunity is an antibody-mediated response that occurs when foreign material is detected in the body. Given that the COVID-19 virus has developed substantial mutations in the spike protein, this can undermine the efficacy of current vaccines and monoclonal antibody therapies. The new technology developed by team of researchers can assist vaccine development studies in phase 1-3, with focus on comparing protection patterns and analyzing novel vaccine candidates.

“Our measurements match the statistical analysis of, for example, the transmissibility of the alpha-variant that can otherwise only be gained by analyzing the development of the disease proliferation within a population over weeks. We believe that this new technology can improve and speed up the public health guidance process,” said Professor Martin Hegner, Principal Investigator in the Trinity Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Trinity’s School of Physics. “The direct technique greatly simplifies the preparation protocol that in ELISA includes many washings and waiting steps, hence reducing the amount of consumables needed and thus the relative cost. It will therefore be well suited to use in emergency situations.”

Related Links:
Trinity College Dublin 

Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
Centrifuge
Hematocrit Centrifuge 7511M4

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.