LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Ultrarapid COVID-19 Test Gives Highly Accurate Results Faster than PCR and LAMP Tests

By LabMedica International staff writers
Posted on 18 Aug 2021
Illustration
Illustration
Researchers have confirmed the speed, accuracy and simplicity of a novel, highly sensitive testing method for COVID-19 that can be deployed at entertainment venues, airport arrival terminals, and in remote settings where clinical testing laboratories are not available.

Scientists at the University of Birmingham (Birmingham, UK) used a three way comparison study to confirm that the Exponential Amplification Reaction (EXPAR) method is just as sensitive, but faster, than both PCR and LAMP tests which are currently used in hospital settings. The Birmingham COVID-19 test, called RTF-EXPAR, gives a sample-to-signal time of under 10 minutes, even for low viral levels where current lateral flow tests are less effective.

The study revealed that the RTF-EXPAR method converts under 10 strands of RNA into billions of copies of DNA in under 10 minutes, using a one-pot assay that is compatible with more basic, benchtop equipment than that used with current testing methods. RTF-EXPAR also demonstrated significant improvements over both PCR and LAMP-based assays on time to signal detection. At low concentrations of RNA (7.25 copies/µL), the time to signal detection was 42.67 (± 0.47) minutes for PCR, 11.25 (± 0.20) minutes for LAMP, and 8.75 (± 0.35) minutes for EXPAR. At high (1450 copies/µL) concentrations of viral RNA, the time to signal detection was 34.00 (± 0.00) minutes for PCR, 11.25 (± 0.20) minutes for LAMP, and 3.08 (± 0.42) minutes for EXPAR.

Identification of the optimal sequence was clearly an important step in the development of the EXPAR method, and the sequence detected in the study, which comes from the Orf1ab gene in the SARS-CoV-2 genome, has been shown to be conserved in all current variants of COVID-19. However, the RTF-EXPAR method can be quickly adapted should new variants emerge, or for testing other viral pathogens such as Influenza, Respiratory Syncytial Virus (RSV), or Ebola, where near-patient testing is required to prevent more widespread transmission.

“Both the reverse transcription and amplification steps slow down existing COVID assays that are based on nucleic acid detection, compared to antigen tests, such as lateral flow, which do not have these steps,” said Professor Tim Dafforn from the School of Biosciences. “However, while this makes lateral flow tests faster than those based on PCR and LAMP, in return they are typically less sensitive. An ideal test would be one that is both sufficiently sensitive and speedy – our test, called RTF-EXPAR, achieves this goal.”

Related Links:
University of Birmingham

Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer (Europe only)
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology Analyzer
Medonic M32B
Automated MALDI-TOF MS System
EXS 3000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more