Blood Test for 50-Gene High Risk Profile Can Predict Poor Outcomes and Help Customize Treatment for COVID-19 Patients
By LabMedica International staff writers Posted on 22 Jun 2021 |

Illustration
A previously validated gene profile in blood that predicts idiopathic pulmonary fibrosis (IPF) mortality was repurposed to assess the likelihood of COVID-19 survival, which means every patient with COVID-19 could potentially get a blood test that could tell if they are at high or low risk of dying.
A multicenter retrospective study led by the USF Health (Tampa, FL, USA) has demonstrated that a blood gene profile associated with a high risk of dying from a severe lung disease can also predict poor outcomes in patients with COVID-19. The risk profile based on 50 genes could help customize how COVID-19 is treated, improve allocation of limited health care resources such as intensive care beds and ventilators, and potentially save lives. IPF, a disease of unknown cause, affects the lung interstitium or the space between the lung sacs and the bloodstream, leading to severe lung scarring. Severe COVID-19 can also damage the lung interstitium leading to severe lung scarring.
The USF Health-led team analyzed gene expression patterns of 50 genes known to predict IPF mortality in three COVID-19 cohorts and two IPF cohorts. The researchers used a molecular scoring system to distinguish between high versus low-risk gene profiles in all five cohorts. The researchers found that in the COVID-19 validation cohorts, a 50-gene high risk profile was linked to greater risk of ICU admission, mechanical ventilation, and in-hospital death. The researchers also performed single-cell, gene expression analyses and identified specific immune cells - monocytes, neutrophils, and dendritic cells - as the primary source of gene expression changes in the high-risk, COVID-19 gene profile. This finding suggests COVID-19 and IPF may share common innate and adaptive immune responses that trigger lung scarring. The 50-gene risk profile in COVID-19 can also predicts mortality in IPF at the exact same threshold.
While more studies are needed, researchers and clinicians may soon be able to apply the gene risk profiles to help advance the care of both COVID-19 and IPF patients. The team is currently developing a blood test, based on these genes, that can be easily applied in clinical practice to predict poor disease outcomes. Besides outcome prediction, the identification of 50-gene risk profiles may also have significant therapeutic potentials. For example, a 10-day regimen of the steroid dexamethasone, a drug that suppresses the immune system, has been shown to increase survival of patients hospitalized with COVID-19. Immunosuppressant drugs have been essentially discontinued for IPF treatment because they increase mortality when given at high doses and in combination over long periods. The 50-gene high risk profile may also support the rationale to investigate the use of targeted IPF antifibrotic medications, which slow the rate of lung scarring, to prevent short and long-term sequelae of COVID-19.
“Our study identified at the molecular level, a gene risk profile that predicts worse COVID-19 outcomes before the patient becomes severely ill,” said principal investigator Jose Herazo-Maya, MD, an associate professor and associate chief of pulmonary, critical care and sleep medicine at the USF Health Morsani College of Medicine. “That means every patient with COVID-19 could potentially get a blood test that could tell us if they are at high or low risk of dying… And if we know in advance who will likely end up in the ICU and who will likely do well recovering at home with appropriate monitoring, we can tailor our interventions to individual patients based on their level of risk.”
Related Links:
USF Health
A multicenter retrospective study led by the USF Health (Tampa, FL, USA) has demonstrated that a blood gene profile associated with a high risk of dying from a severe lung disease can also predict poor outcomes in patients with COVID-19. The risk profile based on 50 genes could help customize how COVID-19 is treated, improve allocation of limited health care resources such as intensive care beds and ventilators, and potentially save lives. IPF, a disease of unknown cause, affects the lung interstitium or the space between the lung sacs and the bloodstream, leading to severe lung scarring. Severe COVID-19 can also damage the lung interstitium leading to severe lung scarring.
The USF Health-led team analyzed gene expression patterns of 50 genes known to predict IPF mortality in three COVID-19 cohorts and two IPF cohorts. The researchers used a molecular scoring system to distinguish between high versus low-risk gene profiles in all five cohorts. The researchers found that in the COVID-19 validation cohorts, a 50-gene high risk profile was linked to greater risk of ICU admission, mechanical ventilation, and in-hospital death. The researchers also performed single-cell, gene expression analyses and identified specific immune cells - monocytes, neutrophils, and dendritic cells - as the primary source of gene expression changes in the high-risk, COVID-19 gene profile. This finding suggests COVID-19 and IPF may share common innate and adaptive immune responses that trigger lung scarring. The 50-gene risk profile in COVID-19 can also predicts mortality in IPF at the exact same threshold.
While more studies are needed, researchers and clinicians may soon be able to apply the gene risk profiles to help advance the care of both COVID-19 and IPF patients. The team is currently developing a blood test, based on these genes, that can be easily applied in clinical practice to predict poor disease outcomes. Besides outcome prediction, the identification of 50-gene risk profiles may also have significant therapeutic potentials. For example, a 10-day regimen of the steroid dexamethasone, a drug that suppresses the immune system, has been shown to increase survival of patients hospitalized with COVID-19. Immunosuppressant drugs have been essentially discontinued for IPF treatment because they increase mortality when given at high doses and in combination over long periods. The 50-gene high risk profile may also support the rationale to investigate the use of targeted IPF antifibrotic medications, which slow the rate of lung scarring, to prevent short and long-term sequelae of COVID-19.
“Our study identified at the molecular level, a gene risk profile that predicts worse COVID-19 outcomes before the patient becomes severely ill,” said principal investigator Jose Herazo-Maya, MD, an associate professor and associate chief of pulmonary, critical care and sleep medicine at the USF Health Morsani College of Medicine. “That means every patient with COVID-19 could potentially get a blood test that could tell us if they are at high or low risk of dying… And if we know in advance who will likely end up in the ICU and who will likely do well recovering at home with appropriate monitoring, we can tailor our interventions to individual patients based on their level of risk.”
Related Links:
USF Health
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more