Low Cost, Saliva-Based COVID-19 Test Inspired by Glucose Test Strips for Diabetes Detects SARS-CoV-2 in 15 Minutes
By LabMedica International staff writers Posted on 17 Jun 2021 |

Illustration
Researchers are developing a rapid, low cost and mass manufacturable saliva-based biosensor test for COVID-19 inspired by the glucose test strips used to check blood sugar levels in people with diabetes.
The team from the University of Strathclyde (Glasgow, Scotland) claims that the test could eventually be mass manufactured for as little as 20 pence per test. It is designed for rapid in the field use, similar to a lateral flow test, to allow people in community settings to determine their COVID-19 status.
When a person is self-testing, they would put saliva directly onto the test strip where the measurement is run by the instrument and the result produced on a display, avoiding the discomfort associated with nasopharyngeal swabs. Compared to other diagnostic tests, glucose blood tests can already be manufactured at scale, with test strips and readers CE marked with regulatory approval for use in the management of diabetes. This means the route to producing a COVID-19 test based on the technology can be much quicker.
The team of researchers has applied a special chemical treatment to the sensor surface to produce the test, which uses the ACE2 enzyme - the receptor that coronavirus uses to bind on to cells - meaning clinically relevant detection levels of the virus can be achieved. The experimental sensor was initially tested with inactivated virus samples at different concentrations, ranging from low to high, alongside negative samples from a commercially available molecular diagnostics standards kit. Hospital laboratory tests were then carried out on real patient samples and most recent set of experiments showed detection was possible in 15 minutes.
The team has patented the experimental technology and will use clinical samples to translate this proof of concept work into a working product. The aim is to develop the test into a CE marked commercial product for real world use. The first version of the test for emergency use is expected to be ready in 12 months and a fully CE marked test is likely to be on the market in 18-24 months.
“The test would provide a scalable route to sensitive, specific, rapid and low-cost testing for COVID-19, but in addition could serve as a low cost tool to rapidly diagnose other respiratory viruses and determine whether someone has COVID-19, flu or rhinovirus,” said lead investigator, Dr. Damion Corrigan from the department of Biomedical Engineering at Strathclyde. “This means it could enable screening of workers, at very low cost, for example in their place of work, identifying and isolating those with the disease and enabling those recovered to go back to work. Initially, we will demonstrate this with COVID-19 and then commercialize the test so that we can work on using the underlying patent to produce new sensor technologies for other respiratory viruses and infectious diseases.”
Related Links:
The University of Strathclyde
The team from the University of Strathclyde (Glasgow, Scotland) claims that the test could eventually be mass manufactured for as little as 20 pence per test. It is designed for rapid in the field use, similar to a lateral flow test, to allow people in community settings to determine their COVID-19 status.
When a person is self-testing, they would put saliva directly onto the test strip where the measurement is run by the instrument and the result produced on a display, avoiding the discomfort associated with nasopharyngeal swabs. Compared to other diagnostic tests, glucose blood tests can already be manufactured at scale, with test strips and readers CE marked with regulatory approval for use in the management of diabetes. This means the route to producing a COVID-19 test based on the technology can be much quicker.
The team of researchers has applied a special chemical treatment to the sensor surface to produce the test, which uses the ACE2 enzyme - the receptor that coronavirus uses to bind on to cells - meaning clinically relevant detection levels of the virus can be achieved. The experimental sensor was initially tested with inactivated virus samples at different concentrations, ranging from low to high, alongside negative samples from a commercially available molecular diagnostics standards kit. Hospital laboratory tests were then carried out on real patient samples and most recent set of experiments showed detection was possible in 15 minutes.
The team has patented the experimental technology and will use clinical samples to translate this proof of concept work into a working product. The aim is to develop the test into a CE marked commercial product for real world use. The first version of the test for emergency use is expected to be ready in 12 months and a fully CE marked test is likely to be on the market in 18-24 months.
“The test would provide a scalable route to sensitive, specific, rapid and low-cost testing for COVID-19, but in addition could serve as a low cost tool to rapidly diagnose other respiratory viruses and determine whether someone has COVID-19, flu or rhinovirus,” said lead investigator, Dr. Damion Corrigan from the department of Biomedical Engineering at Strathclyde. “This means it could enable screening of workers, at very low cost, for example in their place of work, identifying and isolating those with the disease and enabling those recovered to go back to work. Initially, we will demonstrate this with COVID-19 and then commercialize the test so that we can work on using the underlying patent to produce new sensor technologies for other respiratory viruses and infectious diseases.”
Related Links:
The University of Strathclyde
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more