LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Oxford University and Oracle Create Machine Intelligence-Powered Global Pathogen Analysis System to Speed Identification of COVID-19 Variants

By LabMedica International staff writers
Posted on 18 May 2021
Image: Oxford University and Oracle Create Machine Intelligence-Powered Global Pathogen Analysis System to Speed Identification of COVID-19 Variants (Photo courtesy of University of Oxford)
Image: Oxford University and Oracle Create Machine Intelligence-Powered Global Pathogen Analysis System to Speed Identification of COVID-19 Variants (Photo courtesy of University of Oxford)
Oracle Corporation (Santa Clara, CA, USA) and University of Oxford (Oxford, UK) have entered into a partnership that will enable global genomic sequencing and examination through a specialist platform developed on Oracle Cloud Infrastructure (OCI) to help mitigate the impact of potentially dangerous COVID-19 variants.

The emergence of more infectious variants of the COVID-19 virus is threatening to slow the global recovery and potentially thwart current vaccine immunity. To help governments and medical communities identify and act on these variants faster, Oxford and Oracle have created a Global Pathogen Analysis System (GPAS) combining Oxford’s Scalable Pathogen Pipeline Platform (SP3) with the power of OCI.

First used for tuberculosis, SP3 has been repurposed to unify, standardize, analyze, and compare sequence data of SARS-CoV-2, yielding annotated genomic sequences and identifying new variants and those of concern. SP3’s processing capability has been enhanced with extensive new development work from Oracle, enabling high performance and security plus 7 by 24 worldwide availability of the SP3 system in the Oracle Cloud. The SP3 system will now deliver comprehensive and standardized results of COVID-19 analyses within minutes of submission on an international scale. The results will be shared with countries around the globe in a secure environment.

Coupled with the extensive machine learning capabilities in the Oracle Cloud, collaborating scientists, researchers, and governments worldwide can process, analyze, visualize, and act on a wide collection of COVID-19 pathogen data for the first time. This includes identifying variants of interest and their potential impact on vaccine and treatment effectiveness. For example, analytics dashboards in the system will show which specific strains are spreading more quickly than others and whether genetic features contribute to increased transmissibility and vaccine escape. Already, Oxford has processed half the world’s SARS-CoV-2 sequences, more than 500,000 in total. The next step will be to extend this service to all pathogens while simultaneously collaborating with scientists from research establishments, public health agencies, and private companies to ensure this work can inform decision making on pandemic response strategies worldwide. The platform will be free for researchers and non-profits to use worldwide.

“This powerful new tool will enable public health scientists in research establishments, public health agencies, healthcare services, and diagnostic companies around the world to help further understanding of infectious diseases, starting with the coronavirus,” said Derrick Crook, Professor of Microbiology in the Nuffield Department of Medicine at the University of Oxford. “The Global Pathogen Analysis System will help to establish a global common standard for assembling and analyzing this new virus, as well as other microbial threats to public health. This adds a new dimension in our ability to process pathogen data. We are excited to partner with Oracle to further our research using this cutting-edge technology platform.”

“There is a critical need for global cooperation on genomic sequencing and examination of COVID-19 and other pathogens,” said Oracle Chairman and CTO, Larry Ellison. “The enhanced SP3 system will establish a global standard for pathogen data gathering and analysis, thus enabling medical researchers to better understand the COVID-19 virus and other microbial threats to public health.”

Related Links:
University of Oxford
Oracle Corporation


Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Automatic Hematology Analyzer
DH-800 Series

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more