LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Two-Step Prognostic Test Can Predict Severe COVID-19 Cases Even Before Serious Symptoms Appear

By LabMedica International staff writers
Posted on 29 Apr 2021
Print article
Illustration
Illustration
Researchers have developed a two-step prognostic test that can help predict a COVID-19 patient's response to SARS-CoV-2 infection.

The test developed by researchers at University of California (UCI; Irvine, CA, USA) combines a disease risk factor score with a test for antibodies produced early in the infection. It could be administered at the time of diagnosis to help guide therapeutic choices before the most severe symptoms appear.

Early in the pandemic, researchers developed accurate diagnostic tests and identified health conditions that correlated with worse outcomes. However, a clinical predictor of who faces the highest risk of being hospitalized, put on a ventilator or dying from the disease has remained largely out of reach. Most diagnostic tests search for antibodies associated with interrupting the virus. The UCI researchers initially set out to develop their own diagnostic, following this same strategy, but quickly realized that plenty of competing tests would soon be available. Instead, they pivoted to focus on other, unstudied antibodies - ones that wouldn't necessarily disrupt the virus or help the immune system fight the infection.

Previous studies have predicted that the SARS-CoV-2 particle has more than 55 epitopes, or sites on the virus where antibodies can attach. The best studied epitopes to date are those found on the S, or spike, protein, but the virus has three other structural proteins, each with epitopes worth investigating. Using ELISAs, or enzyme-linked immunosorbent assays, the researchers compiled a list of antibodies that might correlate with worse prognosis and ultimately focused on one that attaches to epitope 9 on the N, or nucleocapsid, protein. The group also developed a tool that used data on factors including age, sex, and pre-existing health conditions to produce a disease risk factor score (DRFS).

They tested their tool on a group of 86 people who had tested positive for the coronavirus. Patients whose tests revealed the presence of epitope 9 antibodies were more likely to have prolonged illness and worse outcomes than people without the antibodies. Of the 23 people in the study who did have the antibodies associated with epitope 9, a high DRFS predicted disease severity with more than 92% sensitivity. The test uses technology and tools readily available in testing labs. An inexpensive prognostic test could inform treatment decisions early in the disease progression. The researchers found that the epitope-9 antibodies become detectable between one and six days after the onset of symptoms.

"You can predict with really high sensitivity that someone is going to have a severe case of COVID-19," said Emily Sanders, a UCI graduate student.

Related Links:
University of California

Gold Member
COVID-19 TEST READER
COVID-19-CHECK-1 EASY READER+
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
Coagulation Analyzer
CS-2400

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.