New Molecular Clamping Technology Rapidly Detects Raging New SARS-CoV-2 Variants
By LabMedica International staff writers Posted on 23 Apr 2021 |

Illustration
A new molecular clamping technology that rapidly detects raging new SARS-CoV-2 variants has demonstrated enhanced sensitivity and specificity in a new study.
The findings demonstrated enhanced sensitivity and specificity using DiaCarta Inc.’s (Richmond, CA, USA) proprietary XNA-based molecular clamping technology that uses innovative synthetic Xenonucleic acid molecular oligomers (XNA) which hybridize with target wild-type DNA sequences, acting as molecular clamps, to enable the accurate amplification of mutant sequences only, using quantitative real-time polymerase chain reactions (qPCR).
In the study, a total of 278 previously tested SARS-CoV-2 positive samples, originating primarily from the San Francisco Bay Area, were analyzed. The SARS-CoV-2 Spike-gene D614G mutation was detected in 58 of the 139 samples collected in January 2021 (41.7%) and in 78 of the 139 samples collected in February (56.1%). Notably, while the N501Y mutation was not detected in the samples from January, seven of the February samples tested positive for both the N501Y and D614G mutations. The results suggest a relatively recent and rampant spreading of the UK variant (B.1.1.7) in Northern California. The new molecular clamping technology is highly sensitive and specific and can accelerate large scale testing for SARS-CoV-2 variants to fight the global pandemic.
"Next generation sequencing (NGS) has been the standard method of detection for SARS-CoV-2 variants. However, the NGS-based assays are expensive, time consuming and not widely available, thereby limiting their utility in large scale surveillance for SARS-CoV-2 variants," said Michael Sha, Ph.D., Chief Technology Officer and Senior Vice President of R&D at DiaCarta Inc. "There has been an urgent need for testing platforms that can detect these variants rapidly and cost-effectively. This study demonstrates that DiaCarta's XNA technology can do both - accurately detect known and emerging SARS-CoV-2 mutations and provide a rapid, cost-effective solution for SARS-CoV-2 variant surveillance."
Related Links:
DiaCarta Inc.
The findings demonstrated enhanced sensitivity and specificity using DiaCarta Inc.’s (Richmond, CA, USA) proprietary XNA-based molecular clamping technology that uses innovative synthetic Xenonucleic acid molecular oligomers (XNA) which hybridize with target wild-type DNA sequences, acting as molecular clamps, to enable the accurate amplification of mutant sequences only, using quantitative real-time polymerase chain reactions (qPCR).
In the study, a total of 278 previously tested SARS-CoV-2 positive samples, originating primarily from the San Francisco Bay Area, were analyzed. The SARS-CoV-2 Spike-gene D614G mutation was detected in 58 of the 139 samples collected in January 2021 (41.7%) and in 78 of the 139 samples collected in February (56.1%). Notably, while the N501Y mutation was not detected in the samples from January, seven of the February samples tested positive for both the N501Y and D614G mutations. The results suggest a relatively recent and rampant spreading of the UK variant (B.1.1.7) in Northern California. The new molecular clamping technology is highly sensitive and specific and can accelerate large scale testing for SARS-CoV-2 variants to fight the global pandemic.
"Next generation sequencing (NGS) has been the standard method of detection for SARS-CoV-2 variants. However, the NGS-based assays are expensive, time consuming and not widely available, thereby limiting their utility in large scale surveillance for SARS-CoV-2 variants," said Michael Sha, Ph.D., Chief Technology Officer and Senior Vice President of R&D at DiaCarta Inc. "There has been an urgent need for testing platforms that can detect these variants rapidly and cost-effectively. This study demonstrates that DiaCarta's XNA technology can do both - accurately detect known and emerging SARS-CoV-2 mutations and provide a rapid, cost-effective solution for SARS-CoV-2 variant surveillance."
Related Links:
DiaCarta Inc.
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more