First-Ever Highly Sensitive Antibody Tests Could Detect Infection with All Known Human Coronaviruses, Including New SARS-CoV-2 Variants
By LabMedica International staff writers Posted on 19 Feb 2021 |

Illustration
Scientists have set the stage for the development of highly sensitive antibody tests for infection with all known human coronaviruses, including new variants of SARS-CoV-2.
Scientists at the Center for Infection and Immunity (CII) at Columbia University Mailman School of Public Health (New York, NY, USA) have developed the HCoV-Peptide consisting of three million immune markers on a glass chip and covering proteins of all known human coronaviruses, including the SARS-CoV-2. In collaboration with a team at the SunYat-Sen University (Guangzhou, China), the CII researchers have identified 29 immune signatures specific to SARS-CoV-2. These genetic fingerprints (peptides) provide the blueprint for tests that will be used for diagnostics and surveillance. Current antibody tests for SARS-CoV-2 infection may generate false-positive results because of cross-reactivity with seasonal coronaviruses responsible for the common cold, as well as MERS-CoV and SARS-CoV-1.
To develop the HCoV-Peptide array, the researchers first analyzed blood samples taken from individuals with asymptomatic, mild, or severe SARS-CoV-2 infections, and controls including healthy individuals and those exposed to SARS-CoV-1 and seasonal coronaviruses. An analysis of all approximately 170,000 peptides related to known human coronaviruses yielded 29 peptides with the strongest and most specific reactivity with SARS-CoV-2. Next, they validated their test using a second set of blood samples, including those from confirmed cases of SARS-CoV-2, those with antibodies to other human coronaviruses, and healthy individuals. The new test has a 98% specificity and sensitivity. Immune signatures were present from eight days after onset of COVID-19 symptoms to as long as six to seven months after infection.
“This work will allow us and others to build inexpensive, easy-to-use blood tests that can provide data for exposure as well as immunity,” said author Nischay Mishra, PhD, assistant professor of epidemiology at the Columbia Mailman School.
Related Links:
Columbia University Mailman School of Public Health
SunYat-Sen University
Scientists at the Center for Infection and Immunity (CII) at Columbia University Mailman School of Public Health (New York, NY, USA) have developed the HCoV-Peptide consisting of three million immune markers on a glass chip and covering proteins of all known human coronaviruses, including the SARS-CoV-2. In collaboration with a team at the SunYat-Sen University (Guangzhou, China), the CII researchers have identified 29 immune signatures specific to SARS-CoV-2. These genetic fingerprints (peptides) provide the blueprint for tests that will be used for diagnostics and surveillance. Current antibody tests for SARS-CoV-2 infection may generate false-positive results because of cross-reactivity with seasonal coronaviruses responsible for the common cold, as well as MERS-CoV and SARS-CoV-1.
To develop the HCoV-Peptide array, the researchers first analyzed blood samples taken from individuals with asymptomatic, mild, or severe SARS-CoV-2 infections, and controls including healthy individuals and those exposed to SARS-CoV-1 and seasonal coronaviruses. An analysis of all approximately 170,000 peptides related to known human coronaviruses yielded 29 peptides with the strongest and most specific reactivity with SARS-CoV-2. Next, they validated their test using a second set of blood samples, including those from confirmed cases of SARS-CoV-2, those with antibodies to other human coronaviruses, and healthy individuals. The new test has a 98% specificity and sensitivity. Immune signatures were present from eight days after onset of COVID-19 symptoms to as long as six to seven months after infection.
“This work will allow us and others to build inexpensive, easy-to-use blood tests that can provide data for exposure as well as immunity,” said author Nischay Mishra, PhD, assistant professor of epidemiology at the Columbia Mailman School.
Related Links:
Columbia University Mailman School of Public Health
SunYat-Sen University
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more