Novel Antibody Tests Reveal Complexity of Immune Response to COVID-19
|
By LabMedica International staff writers Posted on 11 Feb 2021 |

Illustration
Researchers have developed two assays that reveal the ability of antibodies to target SARS-CoV-2, particularly the spike protein essential for viral entry into cells, may help determine disease susceptibility and progression in patients.
The interaction of SARS-CoV-2, the novel coronavirus causing the global COVID-19 pandemic, and the human immune system is the focus of intensive research at The Jackson Laboratory (Bar Harbor, ME USA), leading to the development of two assays. The first one is a highly sensitive and specific antibody test to determine the magnitude of total and different types of antibodies against the virus surface (Spike) and nuclear (nucleocapsid) proteins, while the second determines how well anti-SARS-CoV-2 antibodies are able to neutralize binding with ACE-2, the human receptor for the virus. In the latter assay, the team used a non-infectious pseudo-virus with the SARS-CoV-2 spike protein on the external membrane, meaning the assay does not require a BSL-3-level biosecurity facility yet detects the presence of neutralizing antibodies with extremely high sensitivity and specificity.
In their study, the researchers have shown that the assay is able to detect neutralizing antibody in patient plasma even at high dilutions, up to a 100 thousand-fold. Working with samples from 115 subjects with confirmed SARS-Cov-2 infection as well as healthy controls (56 subjects from year-old frozen samples to ensure non-infection), the team was able to determine accurate antibody levels in every patient. The assay is also sufficiently sensitive to distinguish background levels of antibody in control samples which may have been from anti-SARS-CoV-2 antibodies in patient plasma. In addition, the antibody assay provides the ability to identify antibody isotopes and assess the ratio of IgA, IgG and IgM present in each sample.
In the analysis of the patient antibody levels and neutralization, the team had several key findings. First, samples from patients with severe disease - in the ICU or deceased - had almost 100-fold higher neutralizing antibody levels than those with cases mild enough not to require hospitalization. Why, then, did they get so sick? Could extremely high levels of antibody even be harmful? And how would that influence the use of convalescent plasma as a therapy in severely ill patients who already have high antibody levels? Second, most convalescent plasma samples obtained to treat severe patients had much lower antibody levels, suggesting plasma therapy of hospitalized patients would not benefit them. Indeed, recent findings, including those using synthetic antibodies, strongly support this result. Third, there was big difference - almost a thousand-fold - in the level of neutralizing capacity of antibodies among different subjects.
The results suggest that some individuals with low neutralizing antibodies may be protected for a shorter period of time than others, an important finding given the recent emergence of antibody-evading mutant viruses in South Africa and Brazil. Interestingly, some of patient plasma was also able to effectively neutralize the original SARS virus, and there was no particular correlation with the levels of neutralization with SARS-Cov-2. This could be due to the fact that these two viruses have similar Spike surface protein structures and both use ACE2 as a receptor to enter into cells. It remains to be determined whether antibodies that can block both viruses can be more effective in neutralizing SARS-Cov-2.
The researchers will continue to use these assays to follow some subjects six months to a year post-infection, in both adults and children as well as post-vaccination. These studies will be critical for understanding the precise relationship between antibody levels and protection from reinfection, as well as protection acquired through vaccination. They also suggest the use of therapies that target excessive antibodies generated during the severe disease-causing immune pathology.
Related Links:
The Jackson Laboratory
The interaction of SARS-CoV-2, the novel coronavirus causing the global COVID-19 pandemic, and the human immune system is the focus of intensive research at The Jackson Laboratory (Bar Harbor, ME USA), leading to the development of two assays. The first one is a highly sensitive and specific antibody test to determine the magnitude of total and different types of antibodies against the virus surface (Spike) and nuclear (nucleocapsid) proteins, while the second determines how well anti-SARS-CoV-2 antibodies are able to neutralize binding with ACE-2, the human receptor for the virus. In the latter assay, the team used a non-infectious pseudo-virus with the SARS-CoV-2 spike protein on the external membrane, meaning the assay does not require a BSL-3-level biosecurity facility yet detects the presence of neutralizing antibodies with extremely high sensitivity and specificity.
In their study, the researchers have shown that the assay is able to detect neutralizing antibody in patient plasma even at high dilutions, up to a 100 thousand-fold. Working with samples from 115 subjects with confirmed SARS-Cov-2 infection as well as healthy controls (56 subjects from year-old frozen samples to ensure non-infection), the team was able to determine accurate antibody levels in every patient. The assay is also sufficiently sensitive to distinguish background levels of antibody in control samples which may have been from anti-SARS-CoV-2 antibodies in patient plasma. In addition, the antibody assay provides the ability to identify antibody isotopes and assess the ratio of IgA, IgG and IgM present in each sample.
In the analysis of the patient antibody levels and neutralization, the team had several key findings. First, samples from patients with severe disease - in the ICU or deceased - had almost 100-fold higher neutralizing antibody levels than those with cases mild enough not to require hospitalization. Why, then, did they get so sick? Could extremely high levels of antibody even be harmful? And how would that influence the use of convalescent plasma as a therapy in severely ill patients who already have high antibody levels? Second, most convalescent plasma samples obtained to treat severe patients had much lower antibody levels, suggesting plasma therapy of hospitalized patients would not benefit them. Indeed, recent findings, including those using synthetic antibodies, strongly support this result. Third, there was big difference - almost a thousand-fold - in the level of neutralizing capacity of antibodies among different subjects.
The results suggest that some individuals with low neutralizing antibodies may be protected for a shorter period of time than others, an important finding given the recent emergence of antibody-evading mutant viruses in South Africa and Brazil. Interestingly, some of patient plasma was also able to effectively neutralize the original SARS virus, and there was no particular correlation with the levels of neutralization with SARS-Cov-2. This could be due to the fact that these two viruses have similar Spike surface protein structures and both use ACE2 as a receptor to enter into cells. It remains to be determined whether antibodies that can block both viruses can be more effective in neutralizing SARS-Cov-2.
The researchers will continue to use these assays to follow some subjects six months to a year post-infection, in both adults and children as well as post-vaccination. These studies will be critical for understanding the precise relationship between antibody levels and protection from reinfection, as well as protection acquired through vaccination. They also suggest the use of therapies that target excessive antibodies generated during the severe disease-causing immune pathology.
Related Links:
The Jackson Laboratory
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more








 Analyzer.jpg)