LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New AI-Driven COVID-19 Testing Algorithm Could Lead to Fewer Infections

By LabMedica International staff writers
Posted on 25 Jan 2021
Image: New AI-Driven COVID-19 Testing Algorithm Could Lead to Fewer Infections (Photo courtesy of Giovanni Cancemi)
Image: New AI-Driven COVID-19 Testing Algorithm Could Lead to Fewer Infections (Photo courtesy of Giovanni Cancemi)
A new artificial intelligence (AI) algorithm could help leaders of governments and organizations make better informed decisions on how many symptomatic and asymptomatic individuals to test for COVID-19 with a limited supply of daily tests, and at what stage of the pandemic.

Simulated testing strategies of the AI model developed by researchers at Penn State’s College of Information Sciences and Technology (University Park, PA, USA) resulted in approximately 40% fewer infections. Using an AI model known as Partially Observable Markov Decision Processes, the team developed a sequential policy for distributing tests among a population. Their model, called Design of Optimal COVID-19 Testing Oracle, or DOCTOR, was measured against other existing testing strategies used by governments and institutions. Many of these other strategies are static and non-adaptive, potentially causing significant shortcomings in their effectiveness in containing COVID-19.

In a two-phased approach, DOCTOR first suggests spending more effort in testing symptomatic individuals, allocating approximately 65% of its available testing kits for individuals presenting symptoms. Over time, as the number of symptomatic individuals diminishes due to these patients moving to quarantine or hospital settings, DOCTOR shifts its attention to asymptomatic testing, gradually increasing the number of testing kits allocated to asymptomatic individuals as decision points proceed. When applied in a simulation to the city of Santiago in Panama - a country with the world’s highest rate of COVID-19 infections per capita - the model’s testing strategy outperformed state-of-the-art baselines by achieving approximately 40% fewer COVID-19 infections. This illustrates the benefit of having an adaptive strategy, and even more so with new variants of the virus emerging, according to the researchers. The team’s research shows that the use of an AI-driven testing strategy for COVID-19 would be most beneficial when the pandemic spread is intermediate - meaning it’s not too severe and it’s not too slow. As COVID-19 is currently in an intermediate stage in many places worldwide, it is an optimal time for governments and institutions to consider an AI-driven testing strategy. Additionally, the model could be useful in guiding decision makers in the event of a future pandemic.

“There is a possibility that testing is still going to be a part of our COVID-19 prevention efforts in the next year,” said Amulya Yadav, PNC Technologies Career Development Assistant Professor at the College of IST. “Even if vaccines work on the new variants as well, I think there is going to be a difference or a divide between developed and underdeveloped countries and how quickly they are able to vaccinate their populations. So testing is going to be much more important.”

Related Links:
Penn State

Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more