LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

High-Speed NanoPCR Technology Diagnoses COVID-19 in 20 Minutes with Zero False Positive and False Negative

By LabMedica International staff writers
Posted on 09 Dec 2020
Illustration
Illustration
A new high-speed nanoPCR technology for point-of-care (POC) diagnosis of COVID-19 can accurately diagnose the infection in less than 20 minutes, with zero false positive and false negative.

The nanoPCR technology developed by scientists at the Center for Nanomedicine (CNM) within the Institute for Basic Science (IBS; Seoul, Korea) can diagnose COVID-19 while retaining the accuracy of conventional reverse transcription polymerase chain reaction (RT-PCR) technology. The novel nanoPCR technology that can be used for the decentralized, POC diagnosis of COVID-19 uses the same underlying principle as the standard diagnosis method of RT-PCR to detect viral RNA, but also features a vast improvement in speed using hybrid nanomaterials and a miniaturized form factor which allows portability.

The research team utilized a magneto-plasmonic nanoparticle (MPN) that is comprised of magnetic material in its core and a gold shell that exhibits plasmonic effects. By applying MPNs to PCR, they developed 'nanoPCR' which greatly improves the speed of RT-PCR while retaining highly accurate detection. Plasmonic properties of MPN refer to its ability to convert light energy into thermal energy, and by using this it was possible to shorten the thermocycling step of RT-PCR from 1 - 2 hours to within 11 minutes. In addition, the strong magnetic property of MPN allows an external magnetic field to clear MPNs from the PCR solution to allow for fluorescent detection of the amplified genes. The nanoPCR is capable of detecting even a small amount of genes (~3.2 copies/μl) accurately while simultaneously amplifying and detecting genetic material with high sensitivity and specificity.

The researchers tested nanoPCR under clinical settings through the patient specimen tests. During the test, 150 subjects with or without COVID-19 infection were accurately diagnosed using this technology (75 positives, 75 negative samples; zero false-negatives and false-positives). The level of sensitivity and specificity was found to be equivalent to that of the conventional RT-PCR (~99%). In addition to high reliability, the whole diagnostic process was considerably fast, as on average it took about 17 minutes for the diagnosis of one specimen.

In addition, the researchers showed the possibility of improving the analytical throughput by applying a Ferris wheel system to load multiple samples at once, which would allow for simultaneous testing of many samples from multiple patients. Importantly, the nanoPCR equipment is very compact in size (15 × 15 × 18 cm) and weight (3 kg), which allows it to be portable. All of this would pave the way for rapid, decentralized testing of patients for the POC diagnosis.

"Through the improvement and miniaturization of the PCR technology, we have shown that it is possible to perform PCR based POC diagnosis in the field quickly," said Professor Cheon Jinwoo, director of CNM.

Related Links:
Institute for Basic Science

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
Automatic Hematology Analyzer
DH-800 Series

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more