Future COVID-19 Tests Could Be Based on Biomarkers and Molecular Profiles of Individuals
|
By LabMedica International staff writers Posted on 23 Oct 2020 |

Illustration
A new study has shown how variations in SARS-CoV-2 host gene expression can be linked to variations in COVID-19 susceptibility and symptom severity. This could pave the way for better medical tests based on biomarkers and molecular profiles of individuals, to accommodate these variations in monitoring virus transmission and disease pathology, which helps guide mitigation and treatment options.
People have different susceptibilities to the SARS-CoV-2 virus and develop varying degrees of fever, fatigue, and breathing problems - common symptoms of the illness. Scientists at the University of California, Riverside (Riverside, CA, USA) and University of Southern California (Los Angeles, CA, USA) may have an answer to explain this variation. The scientists have shown for the first time that the observed COVID-19 variability may have underlying molecular sources. The finding could help in the development of effective prophylactic and therapeutic strategies against the disease.
The SARS-CoV-2 virus hijacks human host molecules for fusion and virus replication, attacking human cellular functions. These human host molecules are collectively called SARS-CoV-2 host genes. The scientists systematically analyzed SARS-CoV-2 host gene expression, their variations, and age- and sex-dependency in the human population using large-scale genomics, transcriptomics, and proteomics. They first found similarity of host gene expression is generally correlated with tissue vulnerability to SARS-CoV-2 infection. Among the six most variably expressed genes in the population they identified ACE2, CLEC4G, and CLEC4M, which are known to interact with the spike protein of SARS-CoV-2.
Higher expression of these genes likely increases the possibility of being infected and of developing severe symptoms. Other variable genes include SLC27A2 and PKP2, both known to inhibit virus replication; and PTGS2, which mediates fever response. The scientists also identified genetic variants linked to variable expression of these genes. According to them, the expression profiles of these marker genes may help better categorize risk groups. In addition to identifying the most variable SARS-CoV-2 host genes, results from the study suggest genetic and multiple biological factors underlie the population variation in SARS-CoV-2 infection and symptom severity. Next, the researchers plan to further analyze large scale genotypes and transcriptome data of COVID-19 patients when made available and to refine the results for higher association and accuracy.
“Based on biomarkers and molecular profiles of individuals, one would hope to develop better medical tests to accommodate these variations in monitoring virus transmission and disease pathology, which helps guide mitigation and treatment options,” said Sika Zheng, an associate professor of biomedical sciences at the UC Riverside School of Medicine, who led the study.
“More comprehensive risk assessment can better guide the early stage of vaccine distribution,” added Zheng. “Tests can also be developed to include these molecular markers to better monitor disease progression. They can also be used to stratify patients to assess and ultimately enhance treatment effectiveness.”
Related Links:
University of California
People have different susceptibilities to the SARS-CoV-2 virus and develop varying degrees of fever, fatigue, and breathing problems - common symptoms of the illness. Scientists at the University of California, Riverside (Riverside, CA, USA) and University of Southern California (Los Angeles, CA, USA) may have an answer to explain this variation. The scientists have shown for the first time that the observed COVID-19 variability may have underlying molecular sources. The finding could help in the development of effective prophylactic and therapeutic strategies against the disease.
The SARS-CoV-2 virus hijacks human host molecules for fusion and virus replication, attacking human cellular functions. These human host molecules are collectively called SARS-CoV-2 host genes. The scientists systematically analyzed SARS-CoV-2 host gene expression, their variations, and age- and sex-dependency in the human population using large-scale genomics, transcriptomics, and proteomics. They first found similarity of host gene expression is generally correlated with tissue vulnerability to SARS-CoV-2 infection. Among the six most variably expressed genes in the population they identified ACE2, CLEC4G, and CLEC4M, which are known to interact with the spike protein of SARS-CoV-2.
Higher expression of these genes likely increases the possibility of being infected and of developing severe symptoms. Other variable genes include SLC27A2 and PKP2, both known to inhibit virus replication; and PTGS2, which mediates fever response. The scientists also identified genetic variants linked to variable expression of these genes. According to them, the expression profiles of these marker genes may help better categorize risk groups. In addition to identifying the most variable SARS-CoV-2 host genes, results from the study suggest genetic and multiple biological factors underlie the population variation in SARS-CoV-2 infection and symptom severity. Next, the researchers plan to further analyze large scale genotypes and transcriptome data of COVID-19 patients when made available and to refine the results for higher association and accuracy.
“Based on biomarkers and molecular profiles of individuals, one would hope to develop better medical tests to accommodate these variations in monitoring virus transmission and disease pathology, which helps guide mitigation and treatment options,” said Sika Zheng, an associate professor of biomedical sciences at the UC Riverside School of Medicine, who led the study.
“More comprehensive risk assessment can better guide the early stage of vaccine distribution,” added Zheng. “Tests can also be developed to include these molecular markers to better monitor disease progression. They can also be used to stratify patients to assess and ultimately enhance treatment effectiveness.”
Related Links:
University of California
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
Pneumonia continues to be one of the leading causes of death in low- and middle-income countries, where limited access to advanced laboratory infrastructure hampers early and accurate diagnosis.... Read more
Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
Early diagnosis of Parkinson’s disease remains one of the greatest challenges in neurology. The condition, which affects nearly 12 million people globally, is typically identified only after significant... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more









