Rapid COVID-19 Test Uses Graphene-Enhanced Sensor to Produce Signal After Positively Identifying Viral Antigens
By LabMedica International staff writers Posted on 04 Aug 2020 |

Illustration
A new COVID-19 rapid test delivers accurate and reliable results in seconds using a graphene-enhanced sensor that produces a signal when exposed to COVID-19 viral antigens.
The graphene-enhanced sensor has been developed by Graphene Leaders Canada (GLC) Inc. (Alberta, Canada) together with its subsidiary GLC Medical (GLCM) Inc. for use in their Rapid COVID-19 Virus Detection Test Kit. The only of its kind saliva test eliminates the nasopharyngeal swab, all certified practitioner oversight requirements, does not require expensive equipment, and there is no cross handling which increases cross contaminations. GLCM's test directly detects the virus ensuring no false positive/negative results, unlike other tests which detect only the byproducts of infection and are therefore unreliable.
GLCM has completed development of the graphene-enhanced sensor used in the rapid test kit, which is an in-vitro diagnostic device that produces a signal when exposed to COVID-19 viral antigens. Following the achievement of the positive identification of the viral antigens, GLCM has commenced development of a functional prototype of the rapid-response test. GLCM's COVID-19 point-of-care test will offer a unique advantage over other tests as it detects the presence of the COVID-19 virus. GLCM's test has been developed to indicate a positive result only when the COVID-19 virus is present, allowing for direct and clear interpretation by the user. GLCM's rapid test is an "at the door" technology which is perfect before boarding a plane, entering a venue for a concert or sporting event, as it delivers instant results regaining confidences to bring us back to our "normal" before the pandemic. The company is advancing discussions with manufacturers and governments in several countries in order to facilitate production protocols reflective of their country's government regulatory compliance requirements.
"Graphene is the ideal sensing material. The 2D nature and conductive attributes of graphene make for an extremely sensitive material to detect any molecule," said Jason Deacon, Product Development Lead of GLC-GLCM. "I have investigated this principle extensively during my time at Cambridge University. At GLC-GLCM, we have made the surface highly specific to SARS-CoV-2 (COVID-19) to ensure that our rapid test will save lives. The study of 2D materials has been encased in academia for 15 years. Our team at GLC-GLCM believes that nanotechnology regarding 2D materials is critical to future technology and innovation, with graphene at the forefront".
"The success of this development offers the world a solution for COVID-19, and as our graphene is tailorable, we can offer a fast solution to future virus' in rapid modification of our graphene which will ensure we do not relive the major economic shutdown as experienced with COVID-19," said Donna Mandau, President & CEO for GLC-GLCM. "The inspiration for all of us at GLC-GLCM is to offer our graphene solutions for People and Planet. This rapid test brings family and friends together for times of joy free from fear of COVID-19. This test also brings family together in those times that we need to say good-bye to a loved one. No one should have to die alone again."
Related Links:
Graphene Leaders Canada (GLC) Inc.
The graphene-enhanced sensor has been developed by Graphene Leaders Canada (GLC) Inc. (Alberta, Canada) together with its subsidiary GLC Medical (GLCM) Inc. for use in their Rapid COVID-19 Virus Detection Test Kit. The only of its kind saliva test eliminates the nasopharyngeal swab, all certified practitioner oversight requirements, does not require expensive equipment, and there is no cross handling which increases cross contaminations. GLCM's test directly detects the virus ensuring no false positive/negative results, unlike other tests which detect only the byproducts of infection and are therefore unreliable.
GLCM has completed development of the graphene-enhanced sensor used in the rapid test kit, which is an in-vitro diagnostic device that produces a signal when exposed to COVID-19 viral antigens. Following the achievement of the positive identification of the viral antigens, GLCM has commenced development of a functional prototype of the rapid-response test. GLCM's COVID-19 point-of-care test will offer a unique advantage over other tests as it detects the presence of the COVID-19 virus. GLCM's test has been developed to indicate a positive result only when the COVID-19 virus is present, allowing for direct and clear interpretation by the user. GLCM's rapid test is an "at the door" technology which is perfect before boarding a plane, entering a venue for a concert or sporting event, as it delivers instant results regaining confidences to bring us back to our "normal" before the pandemic. The company is advancing discussions with manufacturers and governments in several countries in order to facilitate production protocols reflective of their country's government regulatory compliance requirements.
"Graphene is the ideal sensing material. The 2D nature and conductive attributes of graphene make for an extremely sensitive material to detect any molecule," said Jason Deacon, Product Development Lead of GLC-GLCM. "I have investigated this principle extensively during my time at Cambridge University. At GLC-GLCM, we have made the surface highly specific to SARS-CoV-2 (COVID-19) to ensure that our rapid test will save lives. The study of 2D materials has been encased in academia for 15 years. Our team at GLC-GLCM believes that nanotechnology regarding 2D materials is critical to future technology and innovation, with graphene at the forefront".
"The success of this development offers the world a solution for COVID-19, and as our graphene is tailorable, we can offer a fast solution to future virus' in rapid modification of our graphene which will ensure we do not relive the major economic shutdown as experienced with COVID-19," said Donna Mandau, President & CEO for GLC-GLCM. "The inspiration for all of us at GLC-GLCM is to offer our graphene solutions for People and Planet. This rapid test brings family and friends together for times of joy free from fear of COVID-19. This test also brings family together in those times that we need to say good-bye to a loved one. No one should have to die alone again."
Related Links:
Graphene Leaders Canada (GLC) Inc.
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Cheap Cell-Free DNA Based Test Accurately Predicts Preterm Birth
Preterm birth (PTB) occurs in around 11% of all births globally, leading to considerable morbidity and mortality for both mothers and their newborns. Identifying pregnancies at risk of PTB early in gestation... Read more
RNA Blood Test Detects Cancers and Resistance to Treatment
A newly developed blood test offers the ability to detect cancer, understand how cancer resists treatments, and assess tissue damage from non-cancerous conditions. This innovative test, created by researchers... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read more
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more