We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Fast, Cheap Test Detects COVID-19 Virus’ Genome without Need for PCR

By LabMedica International staff writers
Posted on 26 Jan 2022
Print article
Image: Harmony COVID-19 Test (Photo courtesy of Mark Stone/University of Washington)
Image: Harmony COVID-19 Test (Photo courtesy of Mark Stone/University of Washington)

Researchers have developed a new test for COVID-19 that combines the speed of over-the-counter antigen tests with the accuracy of PCR tests that are processed in medical labs and hospitals.

The Harmony COVID-19 test developed by researchers at the University of Washington (Seattle, WA, USA) is a diagnostic test that, like PCR tests for COVID-19, detects genetic material from the SARS-CoV-2 virus. But whereas conventional PCR tests can take several hours, the Harmony kit can provide results in less than 20 minutes for some samples and with similar accuracy.

The researchers developed Harmony to be simple and easy-to-use, employing ready-to-use reagents. The test uses a “PCR-like” method to detect the presence of the SARS-CoV-2 RNA genome in a nasal swab sample with the aid of a small, low-cost detector, which was also designed by Lutz’s group. A smartphone is used to operate the detector and read the results. The detector can handle up to four samples at a time and would fit into a standard car’s glove compartment.

Many at-home antigen kits for COVID-19, which detect pieces of the proteins the virus creates instead of its genetic material, are 80-85% accurate, though accuracy may drop with the omicron variant, which harbors a relatively high number of mutations not found in other strains. PCR - or polymerase chain reaction - tests are generally 95% accurate or better but require expensive equipment and a long wait for results.

Initial results show that the Harmony kit is 97% accurate for nasal swabs. The Harmony kit detects three different regions of the virus’ genome. If a new variant has many mutations in one region, the new test can still detect the other two. It can, for example, detect the omicron variant, which has dozens of mutations in the region of the genome that encodes the so-called spike protein. Though tests based on PCR are highly accurate, a key limitation is that PCR tests require dozens of cycles of heating and cooling to detect genetic material in a sample. The Harmony test sidesteps this issue by relying on a PCR-like method known as RT-LAMP, which doesn’t have the same stringent temperature-cycling requirements.

“We designed the test to be low-cost and simple enough that it could be used anywhere,” said Barry Lutz, a UW associate professor of bioengineering and investigator with the Brotman Baty Institute for Precision Medicine. “We hope that the low cost will make high-performance testing more accessible locally and around the world.”

Related Links:
University of Washington

Gold Member
COVID-19 TEST READER
COVID-19-CHECK-1 EASY READER+
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Biological Indicator Vials
BI-O.K.
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.