We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Radiolabeled Antibody Saliva Test for Detecting SARS-CoV-2 Delivers Rapid, Accurate and High Volume Results

By LabMedica International staff writers
Posted on 28 Dec 2021
Print article
Illustration
Illustration

Scientists are using radiolabeled antibodies to develop an accurate, inexpensive, portable, high volume, rapid and non-invasive saliva-based testing kit for the detection of SARS CoV-2.

International Isotopes Inc. (INIS; Idaho Falls, ID, USA) has entered into an exclusive licensing agreement with Memorial Sloan Kettering Cancer Center (MSK; Manhattan, NY, USA) for the commercialization of a radiolabled antibody test for detecting SARS CoV-2. In early 2021, INIS and MSK entered into a sponsored research agreement to further advance and develop research being conducted at MSK using radiolabeled antibodies to develop an accurate, inexpensive, portable, high volume, rapid and non-invasive saliva-based testing kit to detect SARS CoV-2.

The sponsored research effort was successful and after a series of in vitro assays to define the sensitivity, specificity, and automation of the testing kit, the testing procedure was further validated at John Hopkins University using live SARS-CoV-2 virions diluted at different plaque-forming unit (PFU) concentrations. The new testing procedure successfully detected SARS CoV-2 virions at a concentration as low as 19700 PFU/mL (corresponding to 2.04 X 108 copies/mL) and as high as 1970000 PFU/mL, confirming the efficacy of the new testing procedure. While the initial research focused on SARS-CoV-2 detection, INIS plans to support additional research and development to apply the new testing method to other viruses.

Briefly, a patient's saliva is diluted with a radiolabeled virus targeted antibody to form a solution. The solution is then placed in a centrifuge, and by using a filter, target bound antibody is size separated from unbound antibody. Detection of the radiochemical in the target bound antibody sample indicates virions. A very large number of samples could be placed into the centrifuge simultaneously, supporting efficient high-volume testing. In terms of accuracy, using an assay the radiolabeled antibody shows a normalized target binding fraction percentage of 1.73 at 2.5 nanograms (ng), confirming both the affinity of the radiolabeled antibody to bind to the Spike S1 on the virus surface and detection of Spike S1 at levels as low as 2.5 ng. The test requires a very small volume of approximately 1 ml of saliva. High volume sample analysis takes approximately 30 minutes and does not require a sterile environment or expensive equipment such that the new testing technology can be deployed to countries and locations with limited resources.

"We are pleased with the excellent results we have seen to date with this new methodology of viral detection and testing. The prospect of developing a quick, inexpensive, accurate, sensitive, non-invasive, saliva-based test for SARS CoV-2, its variants, and any future SARS type virus, is exciting," said Steve Laflin, CEO of INIS. "We are eager to begin testing on other viruses since the targeting capability and affinity of the radiolabeled antibody to bind to the Spike on the virus surface should be applicable to other viruses such as influenza or viral cancers. We are currently evaluating the cost benefit of pursuing FDA Emergency Use Authorization for COVID detection given the large number of tests currently on the market. We will keep shareholders appraised as the commercialization plan matures."

Related Links:
International Isotopes Inc.
Memorial Sloan Kettering Cancer Center 

Gold Member
COVID-19 TEST READER
COVID-19-CHECK-1 EASY READER+
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag
New
Respiratory QC Panel
Assayed Respiratory Control Panel

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.