New Biochip Array Developed for ApoE4 Classification
By LabMedica International staff writers Posted on 04 Aug 2016 |

Image: The semi-automated benchtop Evidence Investigator analyzer (Photo courtesy of Randox).
Apolipoprotein E (APOE) plays a key role in lipid metabolism and is recognized as one of the most powerful genetic risk factors for dementia and other neurodegenerative diseases. It has become one of the most widely studied gene variants in Alzheimer’s disease and constitutes a major consideration for preventive medicine.
Biochip Array Technology (BAT) enables the determination of multiple analytes from a single sample. This technology has been successfully applied to a new biochip array to directly identify from a plasma sample whether patients are ApoE4 heterozygous, homozygous or null through simultaneous detection of both total ApoE levels and specific ApoE4 levels.
Scientists at Randox Teoranta (Dungloe, Ireland) and their colleagues studied an initial cohort of 272 plasma samples of known genotype, which were used to establish initial assay parameters. ApoE exists in three common isoforms (ApoE2, ApoE3 and ApoE4), which are coded by three co-dominant alleles (e2, e3, e4). As such six common ApoE phenotypes exist within the general population E2/E2, E3/E3, E4/E4 (homozygous) and E2/E3, E2/E4, E3/E4 (heterozygous). A further cohort of 112 plasma samples of unknown genotype was utilized to verify performance characteristics established employing the initial cohort.
The team used a simultaneous chemiluminescent biochip-based sandwich immunoassays for measurement of ApoE4 and total ApoE directly from plasma samples were employed and applied to the Evidence Investigator analyzer (Randox Laboratories, Crumlin, UK; www.randox.com). Genotype concordance was further investigated by genotyping these same 112 plasma samples from circulating cell free DNA (cfDNA) through the use of another biochip array platform, based on a combination of multiplex polymerase chain reaction (PCR) and biochip array hybridization, which allows simultaneous detection of APOE specific single nucleotide polymorphisms (SNPs).
The scientists reported that from the initial cohort of 272 samples with known genotypes, 100% were correctly identified as null, heterozygous or homozygous for ApoE4 by the biochip array. From the additional 112 plasma samples, analyzed using BAT for protein and SNPs detection, 100% concordance was found between both approaches. ROC analysis showed that patient samples could be identified as APOE4 positive or negative with 100% sensitivity and 100% specificity, all in approximately three hours.
The investigators concluded that BAT can be successfully applied to provide a platform to rapidly and accurately detect an individual’s APOE4 status directly from a plasma sample. In combination with medical and family history, medication and lifestyle, this can deliver valuable information for personalized medicine approaches. An individual’s APOE status has been shown to affect pre-symptomatic risk, diagnosis, prognosis, and treatment response for a variety of diseases, in particular Alzheimer’s disease. The study was presented at the 68th American Association of Clinical Chemistry (AACC) Annual Scientific Meeting held July 31 to August 4, 2016, in Philadelphia, PA, USA.
Related Links:
Randox
American Association of Clinical Chemistry
Biochip Array Technology (BAT) enables the determination of multiple analytes from a single sample. This technology has been successfully applied to a new biochip array to directly identify from a plasma sample whether patients are ApoE4 heterozygous, homozygous or null through simultaneous detection of both total ApoE levels and specific ApoE4 levels.
Scientists at Randox Teoranta (Dungloe, Ireland) and their colleagues studied an initial cohort of 272 plasma samples of known genotype, which were used to establish initial assay parameters. ApoE exists in three common isoforms (ApoE2, ApoE3 and ApoE4), which are coded by three co-dominant alleles (e2, e3, e4). As such six common ApoE phenotypes exist within the general population E2/E2, E3/E3, E4/E4 (homozygous) and E2/E3, E2/E4, E3/E4 (heterozygous). A further cohort of 112 plasma samples of unknown genotype was utilized to verify performance characteristics established employing the initial cohort.
The team used a simultaneous chemiluminescent biochip-based sandwich immunoassays for measurement of ApoE4 and total ApoE directly from plasma samples were employed and applied to the Evidence Investigator analyzer (Randox Laboratories, Crumlin, UK; www.randox.com). Genotype concordance was further investigated by genotyping these same 112 plasma samples from circulating cell free DNA (cfDNA) through the use of another biochip array platform, based on a combination of multiplex polymerase chain reaction (PCR) and biochip array hybridization, which allows simultaneous detection of APOE specific single nucleotide polymorphisms (SNPs).
The scientists reported that from the initial cohort of 272 samples with known genotypes, 100% were correctly identified as null, heterozygous or homozygous for ApoE4 by the biochip array. From the additional 112 plasma samples, analyzed using BAT for protein and SNPs detection, 100% concordance was found between both approaches. ROC analysis showed that patient samples could be identified as APOE4 positive or negative with 100% sensitivity and 100% specificity, all in approximately three hours.
The investigators concluded that BAT can be successfully applied to provide a platform to rapidly and accurately detect an individual’s APOE4 status directly from a plasma sample. In combination with medical and family history, medication and lifestyle, this can deliver valuable information for personalized medicine approaches. An individual’s APOE status has been shown to affect pre-symptomatic risk, diagnosis, prognosis, and treatment response for a variety of diseases, in particular Alzheimer’s disease. The study was presented at the 68th American Association of Clinical Chemistry (AACC) Annual Scientific Meeting held July 31 to August 4, 2016, in Philadelphia, PA, USA.
Related Links:
Randox
American Association of Clinical Chemistry
Latest AACC 2016 News
- Molecular Test Detects Three Arboviruses in Plasma Samples
- Derived Exosomal Protein Biomarkers in Alzheimer’s Disease Diagnosis
- Cell-Free DNA Identifies Liver Transplant Patients with Acute Rejection
- New Method Tested for Early Diagnosis Pediatric Diabetic Nephropathy
- FDA-Cleared Automated Cell Counter for CSF Launched at AACC 2016
- Semen Analysis Portfolio with Two New Products Featured at AACC 2016
- Automation Solutions for Clinical Diagnostic Equipment Showcased at AACC 2016
- New Tubes Designed for Medium Sample Volumes
- Multi Sample Osmometer Improves Testing Efficiency
- Innovative Information System Optimizes Laboratory Processes
- Innovative eLearning Interface Seamlessly Connects Competency Data
- Cloud-Based Connectivity Platform Advances Decentralized Healthcare
- Adhesives Research to Present Hydrophilic Adhesive Technologies
- Point-of-Care Immunoassay Analyzer on Display at AACC Annual Meeting
- Assay for Determination of 17-OH Progesterone to Be Featured at AACC Annual Meeting
- Fully Automated HbA1c Analyzer Available for Inspection at AACC Annual Meeting
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections
Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read more
Non-Biopsy Approach to Transform Adult Celiac Disease Diagnoses
In the United States, the diagnosis of celiac disease in adults typically relies on a combination of serologic testing and a confirmatory small bowel biopsy during upper endoscopy. In contrast, European... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more