We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genetic Loci Link Plasma Lipid Levels to CVD Risk

By LabMedica International staff writers
Posted on 07 Oct 2019
Print article
Image: The lipodome in connection with the total interactome of a cell (Photo courtesy of Wikimedia Commons).
Image: The lipodome in connection with the total interactome of a cell (Photo courtesy of Wikimedia Commons).
A team of Finnish and international researchers utilized both genomics and lipidomics approaches to identify novel genetic variants associated with plasma levels of lipid species and linked these levels to cardiovascular disease (CVD) risk.

The lipidome refers to the totality of lipids in cells. The human plasma lipidome consists of almost 600 distinct molecular species. Research results have suggested that the lipidome of an individual may be able to indicate cancer risks associated with dietary fats, particularly breast cancer.

While some plasma lipids such as cholesterol and triglycerides are well-established heritable risk factors for CVD, hundreds of other lipid species are known risk factors for cardiovascular disease but have not been well characterized. In this regard, investigators at the University of Helsinki (Finland) and their collaborators sought to establish links between lipid levels and cardiovascular disease risk. Specifically, they aimed to (1) determine heritability of lipid species and their genetic correlations; (2) identify genetic variants influencing the plasma levels of lipid species; (3) test the relationship between identified lipid–species-associated variants and CVD manifestations and (4) gain mechanistic insights into established lipid variants.

For this study, they performed genome-wide association analyses of 141 lipid species (in 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes of 511,700 individuals.

Results showed that the scans had identified 35 lipid-species-associated loci, 10 of which associated with CVD risk including five new loci. Furthermore, they found that lipoprotein lipase (LPL) more efficiently hydrolyzed medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids had the highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels.

"Our study demonstrates that lipidomics enables much deeper insights into the genetic regulation of lipid metabolism. We hope that the openly available browser will in part help future biomarker and drug target discovery and build our understanding of the pathways connecting genetic variation to cardiovascular and other lipid-related diseases", said senior author Dr. Samuli Ripatti, professor of biometry at the University of Helsinki.

The study was published in the September 24, 2019, online edition of the journal Nature Communications and the data are freely available on the Internet at https://mqtl.fimm.fi.

Related Links:
University of Helsinki

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
H.pylori Test
Humasis H.pylori Card

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Sekisui Diagnostics UK Ltd.