We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Set Isolated in Transformation of Skin Cells into Embryonic Tissues

By LabMedica International staff writers
Posted on 13 May 2019
Print article
Image: A micrograph showing four-cell stage mouse embryos (Photo courtesy of Kirill Makedonski, the Hebrew University of Jerusalem).
Image: A micrograph showing four-cell stage mouse embryos (Photo courtesy of Kirill Makedonski, the Hebrew University of Jerusalem).
A team of developmental biologists identified a set of five genes that is capable of transforming skin cells into pluripotent stem cells and then into all three of the cell types that comprise the early embryo: the embryo itself, the placenta, and the extra-embryonic tissues, such as the umbilical cord.

Totipotency represents the type of cell with the greatest differentiation potential, being able to differentiate into any embryonic cell, as well as extraembryonic cells. In contrast, pluripotent cells can only differentiate into embryonic cells. Following fertilization, totipotent cells undergo asymmetric cell divisions, resulting in three distinct cell types in the late pre-implantation blastocyst: epiblast (Epi), primitive endoderm (PrE), and trophectoderm (TE).

In the current study, investigators at the Hebrew University of Jerusalem (Israel) sought to understand whether these three cell types could be induced from fibroblasts by one combination of transcription factors.

Starting with mouse skin cells, the investigators utilized a sophisticated fluorescent "knockin" reporter system to identify a combination of five transcription factors, Gata3, Eomes, Tfap2c, Myc, and Esrrb, that could reprogram fibroblasts into induced pluripotent stem cells (iPSCs), induced trophoblast stem cells (iTSCs), and induced extraembryonic endoderm stem cells (iXENs), concomitantly.

In-depth transcriptomic, chromatin, and epigenetic analyses provide insights into the molecular mechanisms that powered the reprogramming process toward the three cell types. Results published in the April 25, 2019, online edition of the journal Cell Stem Cell showed that the interplay between Esrrb and Eomes during the reprogramming process determined cell fate, where high levels of Esrrb induced a XEN-like state that drove pluripotency and high levels of Eomes drove trophectodermal fate.

Trophoblasts are cells forming the outer layer of a blastocyst, which provide nutrients to the embryo and develop into a large part of the placenta. They are formed during the first stage of pregnancy and are the first cells to differentiate from the fertilized egg. This layer of trophoblasts is also collectively referred to as "the trophoblast" or, after gastrulation, the trophectoderm, as it is then contiguous with the ectoderm of the embryo.

Related Links:
Hebrew University of Jerusalem

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.