LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genome-wide Association Study Identifies New Bipolar Disorder Loci

By LabMedica International staff writers
Posted on 13 May 2019
Image: Brain imaging studies have revealed differences in the volume of various brain regions between patients with bipolar disorder and healthy control subjects (Photo courtesy of Wikimedia Commons).
Image: Brain imaging studies have revealed differences in the volume of various brain regions between patients with bipolar disorder and healthy control subjects (Photo courtesy of Wikimedia Commons).
Results obtained by a large genome-wide association study performed on individuals with bipolar disorder identified 20 new genetic associations involving genes encoding ion channels, neurotransmitter transporters, and synaptic components.

Bipolar disorder, previously known as manic depression, is a mental disorder affecting approximately 60 million people worldwide that causes periods of depression and periods of abnormally elevated mood. The risk of suicide among those with the illness is high at greater than 6% over 20 years, while self-harm occurs in 30-40%. The causes of the disorder are not clearly understood, but both environmental and genetic factors play a role. Many genes of small effect contribute to risk. Environmental risk factors include a history of childhood abuse and long-term stress.

The condition is classified as bipolar I disorder if there has been at least one manic episode, with or without depressive episodes, and as bipolar II disorder if there has been at least one hypomanic episode (but no manic episodes) and one major depressive episode. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder.

To identify genes associated with bipolar disorder, investigators at the Mount Sinai School of Medicine (New York, NY, USA) and at more than 200 collaborating institutions performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 gene loci in an additional 9,412 cases and 137,760 controls.

Analysis of the results revealed 30 loci that were significant genome-wide, including 20 newly identified loci. The significant loci contained genes encoding ion channels, neurotransmitter transporters, and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including those regulating of insulin secretion and endocannabinoid signaling. Eight of the genes linked to bipolar disorder harbored schizophrenia associations as well.

"The crux of this international collaborative study was, in essence, to connect the dots," said first author Dr. Eli Stahl, assistant professor of genetics and psychiatry at Mount Sinai School of Medicine. "By discovering new genes associated with bipolar disorder and demonstrating their overlap with genes found in other psychiatric disorders, we bring ourselves closer to finding the true genetic underpinnings of the disease and improving patient outcomes."

The bipolar disorder GWAS paper was published in the May 1, 2019, online edition of the journal of Nature Genetics.

Related Links:
Mount Sinai School of Medicine

Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Laboratory Software
ArtelWare

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more