LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Experimental Drug Blocks Development of Malignant Melanomas

By LabMedica International staff writers
Posted on 14 Feb 2019
Image: The structure of the NRAS protein (Photo courtesy of Wikimedia Commons).
Image: The structure of the NRAS protein (Photo courtesy of Wikimedia Commons).
A promising experimental drug may prevent growth and spread of malignant melanomas having a mutation in the NRAS gene.

Activating mutations in the NRAS (Neuroblastoma RAS viral oncogene homolog) gene account for 20%–30% of melanoma, but despite decades of research no effective anti-NRAS therapies have been developed.

With this in mind, investigators at Boston University School of Medicine (MA, USA) identified the previously uncharacterized serine/threonine kinase STK19 as a novel NRAS activator. The protein encoded by STK19 localizes predominantly to the nucleus. Its specific function is unknown, but it is thought that phosphorylation of this protein may be involved in transcriptional regulation.

The investigators reported in the January 31, 2019, online edition of the journal Cell that STK19 phosphorylated NRAS, which enhanced its binding to its downstream effectors and promoted oncogenic NRAS-mediated melanocyte malignant transformation. A recurrent D89N (aspartate (D89) to aspargine) substitution in STK19 - whose alterations were identified in 25% of human melanomas - represented a gain-of-function mutation that interacted better with NRAS to enhance melanocyte transformation. STK19 D89N activation led to skin hyperpigmentation and promoted NRAS-driven melanoma formation in vivo.

In addition, the investigators described the development of the drug ZT-12-037-01 as a specific STK19-targeted inhibitor and showed that it effectively blocked oncogenic NRAS-driven melanocyte malignant transformation and melanoma growth in vitro and in vivo.

"This study provides a promising therapeutic strategy for melanoma treatment. Furthermore, the STK19 inhibitor might be a therapeutic option in 25% of all cancers with RAS mutations," said senior author Dr. Rutao Cui, professor of pharmacology and experimental therapeutics at Boston University School of Medicine. "We hope our findings ultimately will be clinically translated into improved care for cancer patients."

Related Links:
Boston University School of Medicine

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more