LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Fluorinated Nanoparticles Facilitate Drug Transfer to Cellular Cytosol

By LabMedica International staff writers
Posted on 22 Jan 2019
Print article
Image: A representation of the movement of the flower-like particle as it makes its way to deliver therapeutic genes (Photo courtesy of Washington State University).
Image: A representation of the movement of the flower-like particle as it makes its way to deliver therapeutic genes (Photo courtesy of Washington State University).
In a proof-of-principle study, novel "nanoflower" drug transporters were used to successfully deliver model drug analogues to cells growing in culture.

Despite advances in the development of nanoparticle-based drug transport systems, very few nanomaterials can be efficiently delivered to the cellular cytosol. Investigators at Washington State University (Pullman, USA) chose to attack this problem by designing crystalline nanoflower‐like particles, which were synthesized from fluorinated sequence‐defined peptoids.

In peptoids the side chain is connected to the nitrogen of the peptide backbone, instead of the alpha-carbon as in peptides. Notably, peptoids lack the amide hydrogen, which is responsible for many of the secondary structure elements in peptides and proteins. In addition, peptoids are not vulnerable to degradation by protease enzymes.

The inclusion of fluorine into the nanoparticle matrix guaranteed that the crystallinity and fluorination of the particles would enable highly efficient cytosolic delivery with minimal cytotoxicity. Fluorination increased lipophilicity because the bond was more hydrophobic than the carbon–hydrogen bond, and helped in cell membrane penetration and hence bioavailability. An added bonus was the fact that the trifluoromethyl moiety is one of the most lipophilic groups known, which has big advantages for the particles' bioavailability.

The investigators crafted flower-like particles of about 150 nanometers in size from sheets of fluorinated peptoids with added fluorescent probes. They reported in the December 27, 2018, issue of the journal, Small that a cytosol delivery rate of 80% had been achieved for the fluorinated peptoid nanoflowers.

These nanocrystals could be adapted to carry therapeutic genes, such as mRNA and effectively deliver the payload into the cytosol, demonstrating the universal delivery capability of the nanocrystals. The results indicated that self‐assembly of crystalline nanomaterials from fluorinated peptoids paved a new way toward development of nanocargoes with efficient cytosolic gene delivery capability.

"To develop nanotechnology for medical purposes, the first thing to consider is toxicity -- That is the first concern for doctors," said senior author Dr. Yueh Lin, professor of mechanical and materials engineering at Washington State University. "The nanoflowers successfully and rapidly escaped and exhibited minimal cytotoxicity. This paves a new way for us to develop nanocargoes that can efficiently deliver drug molecules into the cell and offers new opportunities for targeted gene therapies."

Washington State University filed a patent application for the new technology and is seeking industrial partners for further development.

Related Links:
Washington State University

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
Respiratory QC Panel
Assayed Respiratory Control Panel

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.