LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

RNA Sequencing Offers Greater Capacity for Recovery and Analysis of Molecules

By LabMedica International staff writers
Posted on 01 Jan 2019
Print article
Image: The Nadia automated single cell Drop-seq RNA sequencing system (Photo courtesy of Dolomite Bio).
Image: The Nadia automated single cell Drop-seq RNA sequencing system (Photo courtesy of Dolomite Bio).
A recent paper described a significant modification that enables Drop-seq single-cell RNA sequencing technology to recover and analyze a more diverse variety of molecules.

Drop-seq methodology involves encapsulating single cells with single barcoded beads in nanoliter-sized droplets. The barcoded oligo bead library is constructed such that each bead has a unique DNA barcode sequence, but within a bead, the thousands of copies of oligo all contain an identical barcode sequence. The 3′ end of the oligo has a poly(dT) stretch that captures messenger RNA (mRNA) and primes reverse transcription. Once encapsulated, the cell is broken open and the mRNA is captured on the bead, resulting in single-cell transcriptomes attached to microparticles. The RNA is converted to DNA, amplified and sequenced. The major drawback to the technique is that it can only identify molecules of mRNA, which limits the potential scope of analyses.

Investigators at Cornell University (Ithaca, NY, USA) described in the December 17, 2018, online edition of the journal Nature Methods a modification to Drop-seq. Their DART-seq (droplet-assisted RNA targeting by single-cell sequencing) method was depicted as being a versatile technology that enabled multiplexed amplicon sequencing and transcriptome profiling in single cells. The modification was accomplished by enzymatically customizing the beads prior to performing conventional Drop-seq analysis, which allowed for the recovery and analysis of a greater variety of molecules.

The investigators applied DART-seq to simultaneously characterize the non-A-tailed transcripts of a segmented dsRNA virus and the transcriptome of the infected cell. In addition, they used DART-seq to simultaneously determine the natively paired, variable region heavy and light chain amplicons and the transcriptome of B-lymphocytes.

"Those technologies are very popular because they have lowered the cost of these types of analyses and sort of democratized them, made them very cheap and easy to do for many labs," said senior author Dr. Iwijin De Vlaminck, assistant professor in of biomedical engineering at Cornell University.

Related Links:
Cornell University

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.