We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Targeted System Uses Conjugated Bacteria to Deliver Drugs

By LabMedica International staff writers
Posted on 31 Dec 2018
Print article
Image: NanoBEADS transporters were constructed by conjugating poly(lactic‐co‐glycolic acid) nanoparticles with tumor‐targeting Salmonella typhimurium bacteria (Photo courtesy of Virginia Tech).
Image: NanoBEADS transporters were constructed by conjugating poly(lactic‐co‐glycolic acid) nanoparticles with tumor‐targeting Salmonella typhimurium bacteria (Photo courtesy of Virginia Tech).
A novel delivery system for anti-cancer chemotherapeutic agents utilizes attenuated bacteria that have been conjugated to polymeric nanoparticles to transport the drugs via a targeted, passive process.

Cancer drug delivery is problematic due to systemic toxicity of the drugs and inadequate movement of such nanotherapeutic agents to cells in sites distant from blood vessels. In an attempt to solve these problems, investigators at Virginia Tech (Blacksburg, VA, USA) proposed that an attenuated bacterium could be exploited for autonomous targeted delivery of nanotherapeutics to currently unreachable sites.

For this purpose, the investigators selected Salmonella enterica serovar Typhimurium VNP20009 (S. typhimurium), as it had been thoroughly studied and had been tested successfully in a phase one clinical trial. For the current study, a nanoscale bacteria‐enabled autonomous drug delivery system (NanoBEADS) was developed in which the functional capabilities of the tumor‐targeting S. typhimurium were interfaced with poly(lactic‐co‐glycolic acid) nanoparticles. Poly(lactic-co-glycolic acid) is a copolymer which is used in a host of [U.S.] Food and Drug Administration approved therapeutic devices, owing to its biodegradability and biocompatibility.

The investigators evaluated the impact of nanoparticle conjugation on the ability of NanoBEADS' to invade cancer cells. This was done by examining intratumoral transport of beads in three-dimensional tumor spheroids in vitro, and the biodistribution of the beads in a mammary tumor model in vivo. The investigators reported in the December 5, 2018, online edition of the journal Advanced Science that intercellular self‐replication and translocation were the dominant mechanisms of bacteria intratumoral penetration and that nanoparticle conjugation did not impede the bacteria's intratumoral transport performance.

The investigators further demonstrated that NanoBEADS enhanced nanoparticle retention and distribution in solid tumors by up to a remarkable 100‐fold without requiring any externally applied driving force or control input.

"You can make the most amazing drugs, but if you cannot deliver it where it needs to go, it cannot be very effective," said senior author Dr. Bahareh Behkam, associate professor of mechanical engineering at Virginia Tech. "By improving the delivery, you can enhance efficacy."

"Its (salmonella's) job as a pathogen is to penetrate through the tissue," said Dr. Behkam. "What we thought is if bacteria are so good at moving through the tissue, how about coupling nanomedicine with the bacterium to carry that medicine much farther than it would passively diffuse on its own?"

Related Links:
Virginia Tech

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.