Tumor Suppressor MicroRNA Blocks Cancer Growth in Model
By LabMedica International staff writers Posted on 19 Dec 2018 |

Image: Researchers developed a method to use B-cells to manufacture and secrete microRNA-containing vesicles and showed they could inhibit tumor growth in mice (Photo courtesy of the University of California, San Diego).
By inducing the production of a tumor suppressing microRNA in immune system B-cells, cancer researchers were able to inhibit tumor growth in a mouse model system.
MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. MiRNAs resemble siRNAs of the RNA interference (RNAi) pathway, except miRNAs derive from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs derive from longer regions of double-stranded RNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.
In the current study, which was published in the December 4, 2018, online edition of the journal Scientific Reports, investigators at the University of California, San Diego (USA) worked with the microRNA miR-335, which specifically inhibits the SOX4 transcription factor that promotes tumor growth.
To deliver miR-335 to tumor cells in a mouse model system, the investigators loaded B-cells growing in culture with a miR-335 precursor. The B-cells converted the precursor into mature, active miR-335 and packaged it into small, membrane-coated vesicles that budded off from the cell as induced extracellular vesicles (iEVs). Each B-cell was able to produce about 100,000 miR-335-containing vesicles per day.
The investigators demonstrated that iEVs-335 efficiently and durably restored the endogenous miR-335 pool in human triple negative breast cancer cells, downregulated the expression of the miR-335 target gene SOX4 transcription factor, and markedly inhibited tumor growth in vivo. For this study, human breast cancer cells growing in culture were treated with miR-335-containing vesicles or sham vesicles. The cancer cells were transplanted into mice. After 60 days, 100% (5/5) of the mice with mock-treated cancer cells had large tumors. In contrast, only 44% (4/9) of the mice with miR-335 vesicle-treated cancer cells had tumors. On average, the tumors in the treated mice were more than 260 times smaller than those in the mock-treated mice.
The iEVs-335 mediated transcriptional effects persisted in tumors for more than 60 days following implantation. Genome-wide RNASeq analysis of cancer cells treated in vitro with iEVs-335 showed the regulation of a discrete number of genes only, without broad disruption of the transcriptome.
"Once further developed, we envision this method could be used in situations where other forms of immunotherapy do not work," said senior author Dr. Maurizio Zanetti, professor of medicine at the University of California, San Diego. "The advantages are that this type of treatment is localized, meaning potentially fewer side effects. It is longlasting, so a patient might not need frequent injections or infusions. And it would likely work against a number of different tumor types, including breast cancer, ovarian cancer, gastric cancer, pancreatic cancer, and hepatocellular carcinoma."
"Ideally, in the future we could test patients to see if they carry a deficiency in miR-335 and have an overabundance of SOX4," said Dr. Zanetti. "Then we would treat only those patients, cases where we know the treatment would most likely work. That is what we call personalized, or precision, medicine. We could also apply this technique to other microRNAs with other targets in cancer cells and in other cell types that surround and enable tumors."
Related Links:
University of California, San Diego
MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. MiRNAs resemble siRNAs of the RNA interference (RNAi) pathway, except miRNAs derive from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs derive from longer regions of double-stranded RNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.
In the current study, which was published in the December 4, 2018, online edition of the journal Scientific Reports, investigators at the University of California, San Diego (USA) worked with the microRNA miR-335, which specifically inhibits the SOX4 transcription factor that promotes tumor growth.
To deliver miR-335 to tumor cells in a mouse model system, the investigators loaded B-cells growing in culture with a miR-335 precursor. The B-cells converted the precursor into mature, active miR-335 and packaged it into small, membrane-coated vesicles that budded off from the cell as induced extracellular vesicles (iEVs). Each B-cell was able to produce about 100,000 miR-335-containing vesicles per day.
The investigators demonstrated that iEVs-335 efficiently and durably restored the endogenous miR-335 pool in human triple negative breast cancer cells, downregulated the expression of the miR-335 target gene SOX4 transcription factor, and markedly inhibited tumor growth in vivo. For this study, human breast cancer cells growing in culture were treated with miR-335-containing vesicles or sham vesicles. The cancer cells were transplanted into mice. After 60 days, 100% (5/5) of the mice with mock-treated cancer cells had large tumors. In contrast, only 44% (4/9) of the mice with miR-335 vesicle-treated cancer cells had tumors. On average, the tumors in the treated mice were more than 260 times smaller than those in the mock-treated mice.
The iEVs-335 mediated transcriptional effects persisted in tumors for more than 60 days following implantation. Genome-wide RNASeq analysis of cancer cells treated in vitro with iEVs-335 showed the regulation of a discrete number of genes only, without broad disruption of the transcriptome.
"Once further developed, we envision this method could be used in situations where other forms of immunotherapy do not work," said senior author Dr. Maurizio Zanetti, professor of medicine at the University of California, San Diego. "The advantages are that this type of treatment is localized, meaning potentially fewer side effects. It is longlasting, so a patient might not need frequent injections or infusions. And it would likely work against a number of different tumor types, including breast cancer, ovarian cancer, gastric cancer, pancreatic cancer, and hepatocellular carcinoma."
"Ideally, in the future we could test patients to see if they carry a deficiency in miR-335 and have an overabundance of SOX4," said Dr. Zanetti. "Then we would treat only those patients, cases where we know the treatment would most likely work. That is what we call personalized, or precision, medicine. We could also apply this technique to other microRNAs with other targets in cancer cells and in other cell types that surround and enable tumors."
Related Links:
University of California, San Diego
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more
First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
Many men with early-stage prostate cancer receive stereotactic body radiotherapy (SBRT), a highly precise form of radiation treatment that is completed in just five sessions. Compared to traditional radiation,... Read more
Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Anti-myelin-associated glycoprotein (MAG) antibodies serve as markers for an autoimmune demyelinating disorder that affects the peripheral nervous system, leading to sensory impairment. Anti-MAG-IgM antibodies... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more