LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Mutation Reduces Glucose Uptake and Premature Mortality

By LabMedica International staff writers
Posted on 25 Oct 2018
Image: The mechanism of normal blood sugar absorption (left) vs. insulin resistance in Type II diabetes (right) (Photo courtesy of Wikimedia Commons).
Image: The mechanism of normal blood sugar absorption (left) vs. insulin resistance in Type II diabetes (right) (Photo courtesy of Wikimedia Commons).
A loss-of-function mutation in a gene in the digestive tract reduces glucose uptake from ingested food, which helps to protect the individual from diabetes, obesity, heart failure, and premature mortality from these disorders.

Loss-of-function mutations in the SGLT1 (sodium/glucose co-transporter-1) gene result in a rare glucose/galactose malabsorption disorder and neonatal death if untreated. In the general population, effects related to intestinal glucose absorption have not been well characterized.

To shed light on these effects, investigators at Harvard University Medical School (Boston, MA, USA) conducted experiments designed to identify functional SGLT1 gene variants and characterize their clinical consequences.

Whole exome sequencing was performed on 8,478 participants in the ARIC (Atherosclerosis Risk in Communities) study. This study was a 25-year-long observational trial of atherosclerosis and cardiovascular risk factors in people living in four communities in the USA. In addition to genetic testing, the association of functional, nonsynonymous substitutions in SGLT1 with two-hour oral glucose tolerance test results was determined.

Results published in the October 9, 2018, issue of the Journal of the American College of Cardiology revealed that approximately 6% of the ARIC participants carried a mutation in SGLT-1 that caused limited impairment of glucose absorption. Individuals with this mutation had a lower incidence of type II diabetes, were less obese, had a lower incidence of heart failure, and had a lower mortality rate when compared to those without the mutation.

The investigators believe that reduced intestinal glucose uptake induced by the mutation may protect the individual from long-term cardiovascular and metabolic disorders, providing support for development of therapies that will target SGLT1 function to prevent and treat metabolic conditions.

"We are excited about this study because it helps clarify the link between what we eat, what we absorb, and our risk for disease. Knowing this opens the door to improved therapies for cardio-metabolic disease," said senior author Dr. Scott D. Solomon, professor of medicine at Harvard University Medical School. "This study is the first to fully evaluate the link between mutations in the gene mainly responsible for absorbing glucose in the gut--SGLT-1, or sodium glucose co-transporter-1--and cardio-metabolic disease."

Related Links:
Harvard University Medical School

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Urine Chemistry Control
Dropper Urine Chemistry Control

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more