We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Molecular Scaffolds Promise Drug Synthesis in Breast Cancer Treatment

By LabMedica International staff writers
Posted on 16 Oct 2018
Print article
Image: A diagram of a fundamentally new molecule that can halt proliferation and growth of breast cancer cells in the laboratory (Photo courtesy of the Stevens Institute of Technology).
Image: A diagram of a fundamentally new molecule that can halt proliferation and growth of breast cancer cells in the laboratory (Photo courtesy of the Stevens Institute of Technology).
A recently developed class of molecular scaffolds for treatment of breast cancer promises to facilitate the synthesis of drugs capable of degrading or inhibiting estrogen receptors (ERs).

Drug developers have been searching for compounds with selective estrogen receptor degrader (SERD) and ER antagonistic properties for many years. A SERD is a type of drug that binds to the ER and, in the process of doing so, causes the ER to be degraded and thus downregulated. They are used to treat estrogen receptor-sensitive or progesterone receptor-sensitive breast cancer, along with older classes of drugs like selective estrogen receptor modulators (SERMs) and aromatase inhibitors. To date, the only SERD approved for marketing in the USA has been Fulvestrant, which works by binding to the ER and destabilizing it, causing the cell's normal protein degradation processes to destroy it.

Investigators at the Stevens Institute of Technology (Hoboken, NJ, USA) reported in the August 9, 2018, issue of the journal ACS Medicinal Chemistry Letters that they had developed new classes of scaffolds that possess SERD and ER antagonistic properties. These novel SERDs potently inhibited MCF-7 breast cancer cell proliferation and the expression of ER target genes, and their efficacy was comparable to Fulvestrant.

Unlike Fulvestrant, the modular protein-targeted chimera (PROTAC)-type design of these novel SERDs is expected to allow easy diversification into a library of analogs to further fine-tune their pharmacokinetic properties including oral availability. In addition, this will tend to expand the pool of currently available PROTAC-type scaffolds that could be beneficial for targeted degradation of various other therapeutically important proteins.

“The unique benefit of our compounds is that this is a fundamentally different type of structure that was previously not known to degrade or inhibit estrogen receptors,” said senior author Dr. Abhishek Sharma, professor of chemistry at the Stevens Institute of Technology. “It is not a tweak of an existing drug; it works in a completely different way. We consider these results to be very promising. This is a novel molecular structure, and several analogs produced excellent early activity."

Related Links:
Stevens Institute of Technology

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.