Candidate Cancer Drug Blocks Growth and Reverses Drug Resistance
By LabMedica International staff writers Posted on 09 Oct 2018 |

Image: The structure of the recently developed cancer drug Metavert (Photo courtesy of the U.S. National Library of Medicine).
A candidate drug for treatment of pancreatic cancer was shown to slow growth and spread of the disease in cell cultures and reverse drug resistance in preclinical animal models.
Growth, progression, and drug resistance of pancreatic ductal adenocarcinomas (PDACs) have been associated with increased levels and activity of the enzymes glycogen synthase kinase 3 beta (GSK3B) and histone deacetylases (HCACs). GSK-3B stimulates proliferation and resistance to apoptosis in cancer cells while HDAC inhibits epithelial cells. A drug that inhibits these two enzymes should simultaneously affect proliferation and metastasis.
The drug candidate, Metavert, is a small molecular dual inhibitor that blocks two pro-cancer pathways through two linked moieties that target GSK3B and HDAC. In a study published in the August 22, 2018, online edition of the journal Gastroenterology, investigators at Cedars-Sinai Medical Center (Los Angeles, CA, USA) - who hold a patent on the drug - tested its effects in pancreatic cancer cells and mice with pancreatic tumors.
The investigators tested the ability of Metavert to bind GSK3B and HDACs in various cell lines using surface plasmon resonance. Plasmon resonance is a phenomenon that occurs when light is reflected off thin metal films, which may be used to measure interaction of biomolecules on the surface. An electron charge density wave arises at the surface of the film when light is reflected at the film under specific conditions. A fraction of the light energy incident at a defined angle can interact with the delocalized electrons in the metal film (plasmon) thus reducing the reflected light intensity. The angle of incidence at which this occurs is influenced by the refractive index close to the backside of the metal film, to which target molecules are immobilized. If ligands in a mobile phase running along a flow cell bind to the surface molecules, the local refractive index changes in proportion to the mass being immobilized. This can be monitored in real time by detecting changes in the intensity of the reflected light.
Treated cells were analyzed for apoptosis and migration and by immunoblotting, immunofluorescence, and real-time PCR. Normal mice were given injections of Metavert or vehicle (control). B6.129J mice with tumors grown from UN-KPC961-Luc cells were given injections of Metavert or vehicle. Tumors and metastases were counted and pancreata were analyzed by immunohistochemistry. Glucose metabolism was measured using 13C-glucose tracer and mass spectroscopy and flow cytometry.
Results revealed that Metavert significantly reduced survival of PDAC cells but not non-transformed cells. The drug reduced markers of the epithelial to mesenchymal transition and stem cells in PDAC cell lines. Cells incubated with Metavert in combination with irradiation and the chemotherapeutic agent paclitaxel or gemcitabine had reduced survival compared to cells incubated with either agent alone. Metavert increased killing of drug-resistant PDAC cells by paclitaxel and gemcitabine. In addition, PDAC cells incubated with Metavert acquired normalized glucose metabolism.
Administration of Metavert (alone or in combination with gemcitibine) to mice with syngeneic tumors significantly increased their survival times, slowed tumor growth, prevented tumor metastasis, decreased tumor infiltration by tumor-associated macrophages, and decreased blood levels of cytokines.
"This is an exciting step toward improving survival rates in pancreatic cancer patients," said first author Dr. Mouad Edderkaoui, assistant professor of medicine and biomedical sciences at Cedars-Sinai Medical Center. "If the results are confirmed in humans, we could have a drug with the potential to significantly extend the lives of patients with pancreatic ductal adenocarcinoma (PDAC), which is very difficult to treat."
Related Links:
Cedars-Sinai Medical Center
Growth, progression, and drug resistance of pancreatic ductal adenocarcinomas (PDACs) have been associated with increased levels and activity of the enzymes glycogen synthase kinase 3 beta (GSK3B) and histone deacetylases (HCACs). GSK-3B stimulates proliferation and resistance to apoptosis in cancer cells while HDAC inhibits epithelial cells. A drug that inhibits these two enzymes should simultaneously affect proliferation and metastasis.
The drug candidate, Metavert, is a small molecular dual inhibitor that blocks two pro-cancer pathways through two linked moieties that target GSK3B and HDAC. In a study published in the August 22, 2018, online edition of the journal Gastroenterology, investigators at Cedars-Sinai Medical Center (Los Angeles, CA, USA) - who hold a patent on the drug - tested its effects in pancreatic cancer cells and mice with pancreatic tumors.
The investigators tested the ability of Metavert to bind GSK3B and HDACs in various cell lines using surface plasmon resonance. Plasmon resonance is a phenomenon that occurs when light is reflected off thin metal films, which may be used to measure interaction of biomolecules on the surface. An electron charge density wave arises at the surface of the film when light is reflected at the film under specific conditions. A fraction of the light energy incident at a defined angle can interact with the delocalized electrons in the metal film (plasmon) thus reducing the reflected light intensity. The angle of incidence at which this occurs is influenced by the refractive index close to the backside of the metal film, to which target molecules are immobilized. If ligands in a mobile phase running along a flow cell bind to the surface molecules, the local refractive index changes in proportion to the mass being immobilized. This can be monitored in real time by detecting changes in the intensity of the reflected light.
Treated cells were analyzed for apoptosis and migration and by immunoblotting, immunofluorescence, and real-time PCR. Normal mice were given injections of Metavert or vehicle (control). B6.129J mice with tumors grown from UN-KPC961-Luc cells were given injections of Metavert or vehicle. Tumors and metastases were counted and pancreata were analyzed by immunohistochemistry. Glucose metabolism was measured using 13C-glucose tracer and mass spectroscopy and flow cytometry.
Results revealed that Metavert significantly reduced survival of PDAC cells but not non-transformed cells. The drug reduced markers of the epithelial to mesenchymal transition and stem cells in PDAC cell lines. Cells incubated with Metavert in combination with irradiation and the chemotherapeutic agent paclitaxel or gemcitabine had reduced survival compared to cells incubated with either agent alone. Metavert increased killing of drug-resistant PDAC cells by paclitaxel and gemcitabine. In addition, PDAC cells incubated with Metavert acquired normalized glucose metabolism.
Administration of Metavert (alone or in combination with gemcitibine) to mice with syngeneic tumors significantly increased their survival times, slowed tumor growth, prevented tumor metastasis, decreased tumor infiltration by tumor-associated macrophages, and decreased blood levels of cytokines.
"This is an exciting step toward improving survival rates in pancreatic cancer patients," said first author Dr. Mouad Edderkaoui, assistant professor of medicine and biomedical sciences at Cedars-Sinai Medical Center. "If the results are confirmed in humans, we could have a drug with the potential to significantly extend the lives of patients with pancreatic ductal adenocarcinoma (PDAC), which is very difficult to treat."
Related Links:
Cedars-Sinai Medical Center
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more
New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
Drug-induced kidney injury, also known as nephrotoxicity, is a prevalent issue in clinical practice, occurring when specific medications at certain doses cause damage to the kidneys. Nephrotoxicity can... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more