LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Approach Brings Personalized Melanoma Treatment Closer to Reality

By LabMedica International staff writers
Posted on 27 Sep 2018
Image: T-cells (red) attacking melanoma cells (green). The neo-antigen-specific T- cells in this image are especially effective at killing cancer cells (Photo courtesy of the Weizmann Institute of Science).
Image: T-cells (red) attacking melanoma cells (green). The neo-antigen-specific T- cells in this image are especially effective at killing cancer cells (Photo courtesy of the Weizmann Institute of Science).
A team of melanoma researchers used a novel "HLA peptidomics" method to identify and isolate cancer-specific neo-antigens, which could be used to train immune system cells for targeting and destruction of the tumor.

The quest for tumor-associated-antigens (TAAs) and neo-antigens is a major focus of cancer immunotherapy. Neo-antigens are those that are entirely absent from the normal human genome. They are of relevance to tumor control, as the quality of the T-cell pool that is available for these antigens is not affected by central T-cell tolerance.

In a paper published in the September 12, 2018, online edition of the journal Cancer Discovery, investigators at the Weizmann Institute of Science (Rehovot, Israel), Technion - Israel Institute of Technology (Haifa), and their collaborators combined a neo-antigen prediction-pipeline and human-leukocyte-antigen (HLA)-peptidomics to identify TAAs and neo-antigens in 16 tumors derived from seven melanoma patients, and characterize their interactions with their tumor-infiltrating lymphocytes (TILs).

The investigators used the peptidomics method to bypass previously described algorithmic methods. Instead, they employed a method that removed the peptides from the melanoma cells' HLA complex and investigated the interactions of these antigens with T-cells.

This methodology facilitated the discovery of remarkable antigenic and TIL similarities between metastases from the same patient. Furthermore, the investigators found that two neo-antigen-specific clonotypes killed 90% of autologous melanoma cells - both in vitro and in vivo - showing that a limited set of neo-antigen-specific T-cells may play a central role in melanoma tumor rejection.

First author Dr. Yardena Samuels, associate professor of molecular cell biology at the Weizmann Institute of Science, said, "We discovered that tumors present many fewer neo-antigens than we expected. Our neo-antigen and corresponding T-cell-identification strategies were so robust; our neo-antigen-specific T-cells killed 90% of their target melanoma cells both on plates and in mice. This suggests possible clinical applications for the near future. Some of the peptides we identified are neo-antigens that had not even shown up in the algorithm studies; in other words, the method we used, called HLA peptidomics, is really complementary to these methods."

Dr. Samuels said that, "Although this research is experimental right now, the findings are highly relevant to clinical research, as groups around the world have already worked out the basics of developing therapeutic anti-cancer treatments based on neo-antigens. As almost all the neo-antigens detected in patients thus far are individual -and unique to the particular cancerous tissue - they constitute an ideal class of anti-cancer targets. This would be the ultimate "personalized" cancer therapy - a new drug is created for every patient."

Related Links:
Weizmann Institute of Science
Technion - Israel Institute of Technology

Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Gel Cards
DG Gel Cards

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more