LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Map Reveals How Zika Virus Associates with Host Cell Proteins

By LabMedica International staff writers
Posted on 05 Sep 2018
Print article
Image: A photomicrograph showing Zika virus particles in red, within the endomembrane system of African green monkey kidney cells (Photo courtesy of the U.S. National Institute of Allergy and Infectious Diseases).
Image: A photomicrograph showing Zika virus particles in red, within the endomembrane system of African green monkey kidney cells (Photo courtesy of the U.S. National Institute of Allergy and Infectious Diseases).
A team of viral molecular biologists has mapped host cell protein interaction profiles for each of the ten polypeptides encoded in the Zika virus (ZIKV) genome, generating a protein topology network comprising 3033 interactions amongst 1224 unique human polypeptides.

Zika virus is a membrane enveloped Flavivirus with a positive strand RNA genome, transmitted by Aedes mosquitoes. The geographical range of ZIKV has dramatically expanded in recent decades resulting in increasing numbers of infected individuals, and the spike in ZIKV infections has been linked to significant increases in both Guillain-Barré syndrome and microcephaly. While a large number of host proteins have been physically and/or functionally linked to other Flaviviruses, very little is known about the virus-host protein interactions established by ZIKV.

Investigators at the University of Toronto (Canada) generated 10 strains of human cells with each strain expressing one Zika protein. By adding a low molecular weight "epitope" tag to each viral protein they could retrieve these proteins using an antibody that bound to the tag. In addition, they used proximity labeling to identify closely linked viral and human proteins.

Results reported in the July 23, 2018, online edition of the journal Molecular & Cellular Proteomics revealed a set of host cell protein interaction profiles for each of the ten polypeptides encoded in the ZIKV genome. This protein topology network comprised 3033 interactions amongst 1224 unique human polypeptides. This network was enriched in proteins with roles in polypeptide processing and quality control, vesicle trafficking, RNA processing, and lipid metabolism. More than 60% of the network components had been previously implicated in other types of viral infections; the remaining proteins comprised hundreds of new putative ZIKV functional partners.

"A better understanding of these processes will allow us to identify specific vulnerabilities in the virus life cycle where antiviral drugs can be targeted," said senior author Dr. Brian Raught, professor of proteomics and molecular medicine at the University of Toronto.

Related Links:
University of Toronto

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
New
Biological Indicator Vials
BI-O.K.

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.