LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Researchers Identify Two Proteins Required to Reverse Senescence

By LabMedica International staff writers
Posted on 21 Aug 2018
Image: A micrograph showing cellular senescence in human cells (Photo courtesy of Eva Latorre, University of Exeter).
Image: A micrograph showing cellular senescence in human cells (Photo courtesy of Eva Latorre, University of Exeter).
Two protein-splicing factors have been identified that enable mitochondria-targeted hydrogen sulfide to reverse senescence in endothelial cells.

Senescent cells are aged or damaged cells that no longer are able to perform their normal roles. These cells interfere with the functioning of the tissue in which they accumulate, and eliminating them is considered to be a promising therapeutic approach. Hydrogen sulfide (H2S) has been found to alleviate senescence, but the pathways by which it accomplishes this are unclear.

To study these pathways, investigators at the University of Exeter (United Kingdom) assessed the effect of the H2S donor Na-GYY4137, and since mitochondria are a source and a target of H2S, three novel H2S donors, AP39, AP123, and RT01 previously demonstrated to be targeted specifically to the mitochondria, on splicing regulatory factor expression and cell senescence phenotypes in senescent primary human endothelial cells.

The investigators reported in the July 19, 2018, online edition of the journal Aging that H2S donors targeted to the mitochondria reversed senescence, but each demonstrated a very specific upregulation of transcripts encoding the splicing activator protein SRSF2 (Splicing factor, arginine/serine-rich 2) and the splicing inhibitor protein HNRNPD (Heterogeneous nuclear ribonucleoprotein D0). Abolition of either SRSF2 or HNRNPD expression in primary endothelial cells in the absence of any other treatment resulted in increased levels of cellular senescence. None of the H2S donors were able to reduce senescent cell load in cells in which SRSF2 or HNRNPD expression had been abrogated.

These results indicated that mitochondria-targeted H2S was capable of rescuing senescence phenotypes in endothelial cells through mechanisms that specifically involved SRSF2 and HNRNPD.

"As human bodies age, they accumulate old (senescent) cells that do not function as well as younger cells," said senior author Dr. Lorna Harries, associate professor of molecular genetics at the University of Exeter. "This is not just an effect of ageing – it is a reason why we age. We used to think age-related diseases like cancer, dementia, and diabetes each had a unique cause, but they actually track back to one or two common mechanisms. This research focuses on one of these mechanisms, and the findings with our compounds have potentially opened up the way for new therapeutic approaches in the future."

Related Links:
University of Exeter

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
PCR Plates
Diamond Shell PCR Plates
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more