LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gel Encapsulation Transport System Targets Disease-Related Cells

By LabMedica International staff writers
Posted on 10 Aug 2018
Print article
Image: The figure shows two views, frontal and lateral, of the image obtained by CT of the lungs of a mouse with fibrosis (grey areas) before and after receiving nano-therapy directed at senescent cells (Photo courtesy of Guillem Garaulet and Francisca Mulero, Institute for Research in Biomedicine).
Image: The figure shows two views, frontal and lateral, of the image obtained by CT of the lungs of a mouse with fibrosis (grey areas) before and after receiving nano-therapy directed at senescent cells (Photo courtesy of Guillem Garaulet and Francisca Mulero, Institute for Research in Biomedicine).
A novel therapeutic approach uses drugs encapsulated within galacto‐oligosaccharide gel capsules to target diseases that have accumulated a high percentage of senescent cells.

Senescent cells are aged or damaged cells that no longer are able to perform their normal roles. These cells interfere with the functioning of the tissue in which they accumulate, and eliminating them is considered to be a promising therapeutic approach.

Investigators at the Institute for Research in Biomedicine (Barcelona, Spain) took advantage of the high lysosomal beta‐galactosidase activity of senescent cells to design a drug delivery system based on the encapsulation of drugs with galacto‐oligosaccharides and their delivery to lysosomes via endocytosis.

The investigators reported in the July 16, 2018, online edition of the journal EMBO Molecular Medicine that gal‐encapsulated fluorophores were preferentially released within senescent cells in mice. In a model of chemotherapy‐induced senescence, gal‐encapsulated cytotoxic drugs targeted senescent tumor cells and improved tumor xenograft regression in combination with the drug palbociclib.

In a model of pulmonary fibrosis in mice, gal‐encapsulated cytotoxic agents targeted senescent cells, reducing collagen deposition and restoring pulmonary function. In addition, gal‐encapsulation reduced the toxic side effects of the cytotoxic drugs. Thus, drug delivery into senescent cells opened new diagnostic and therapeutic applications for senescence‐associated disorders.

Senior author Dr. Manuel Serrano, head of the cellular plasticity and disease laboratory at the Institute for Research in Biomedicine, said, "This nanocarrier may pave the way for new therapeutic approaches for serious conditions, such as pulmonary fibrosis or to eliminate chemotherapy-induced senescent cells."

Related Links:
Institute for Research in Biomedicine

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
Centrifuge
Hematocrit Centrifuge 7511M4

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.