LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Bacteriophages Delivered by Dry Powder Cure Lung Diseases in Model

By LabMedica International staff writers
Posted on 03 Aug 2018
Image: Image shows the effect particles coated with phage (red) have on bacterial colonies (green). The dark green areas around the particles show areas where bacteria are being killed. (Photo courtesy of Rachit Agarwal, Garcia Laboratory, Georgia Institute of Technology).
Image: Image shows the effect particles coated with phage (red) have on bacterial colonies (green). The dark green areas around the particles show areas where bacteria are being killed. (Photo courtesy of Rachit Agarwal, Garcia Laboratory, Georgia Institute of Technology).
A novel antibacterial transport system utilized a dry powder approach to deliver microparticles coated with bacteriophages to difficult to access areas in the lungs.

Lung infections associated with pneumonia, or cystic fibrosis caused by Pseudomonas aeruginosa or other bacteria, result in significant morbidity and mortality, in part owing to the development of multidrug resistance, also against last-resort antibiotics. Lytic bacteriophages (viruses that specifically kill bacteria) can reduce lung-associated infections, yet their clinical use is hindered by difficulties in delivering active phages to the deep lung.

To solve the problem of phage transport, investigators at the Georgia Institute of Technology (Atlanta, USA) developed microparticle carriers fabricated from the same polymer material used in dissolving sutures. These porous particles were made to be large enough to avoid rapid clearance by the body, but light enough to be delivered deep into the lungs. Phages were incubated with the particles, which were then dried.

The investigators reported in the July 16, 2018, online edition of the journal Nature Biomedical Engineering that phage-loaded polymeric microparticles deposited throughout the lungs via dry powder inhalation delivered active phages. These phage-loaded microparticles effectively reduced P. aeruginosa infections and the associated inflammation in wild-type and cystic fibrosis transmembrane-conductance-regulator knockout mice, and rescued the mice from pneumonia-associated death. The phage-coated microparticles were more effective at clearing bacteria than dried phage particles by themselves. The polymer material was biodegradable and was cleared from the animals within a few days.

“When we immobilized the phage on the particles, we could retain good activity for days – as long as two weeks at room temperature. We could store these particles, and when we delivered them to mice, get good distribution through the lungs. We believe the particles help stabilize the phage and improve the distribution in the lungs,” said senior author Dr. Andrés García, professor of mechanical engineering at the Georgia Institute of Technology. “Phage delivery is an area where the right type of material could make a difference in therapeutic applications. We set out to engineer a biomaterial carrier that would keep the phage active while delivering them deep into the lungs in a uniform fashion. This is a key step in moving this potential therapy forward.”

Related Links:
Georgia Institute of Technology

Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
Homocysteine Quality Control
Liquichek Homocysteine Control

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more