LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Synthetic Fatty Acid Derivatives Display Anti-Cancer Potential

By LabMedica International staff writers
Posted on 26 Jul 2018
Image: A ball-and-stick model of the docosahexaenoic acid (DHA) molecule. DHA is an omega-3 fatty acid that is a primary structural component of the human brain, cerebral cortex, skin, and retina (Photo courtesy of Wikimedia Commons).
Image: A ball-and-stick model of the docosahexaenoic acid (DHA) molecule. DHA is an omega-3 fatty acid that is a primary structural component of the human brain, cerebral cortex, skin, and retina (Photo courtesy of Wikimedia Commons).
Metabolites produced during digestion of omega-3 fatty acids have been found to have anti-cancer properties, and their synthetic derivatives have the potential to be developed into potent chemotherapeutic drugs.

Dietary omega-3 fatty acids, such as docosahexaenoic acid (DHA), have been shown to suppress tumor growth through their conversion to epoxide metabolites. Alternatively, DHA is converted enzymatically into docosahexaenoylethanolamide (DHEA), an endocannabinoid with anti-proliferative activity.

Investigators at the University of Illinois (Champaign-Urbana, USA) had previously described a novel class of anti-inflammatory DHEA-epoxide derivative called epoxydocospentaenoic-ethanolamide (EDP-EA) that contained both ethanolamide and epoxide moieties. To expand those findings they examined the anti-tumorigenic properties of EDP-EAs in an osteosarcoma (OS) mouse model.

The investigators showed an approximately 80% increase in EDP-EAs in metastatic versus normal lungs of mice. In addition they found significant differences in the apoptotic and anti-migratory potencies of different EDP-EA structural isomers, which were partially mediated through the cannabinoid receptor 1 (CB1). The cannabinoid receptor is represented in relatively high density on the surface of cancer cells.

The investigators then synthesized derivatives of the most pro-apoptotic isomer. These derivatives were found to display reduced hydrolytic susceptibility to fatty acid amide hydrolase (FAAH) and increased CB1-selective binding.

"We have a built-in endocannabinoid system which is anti-inflammatory and pain-reducing. Now we see it is also anti-cancer, stopping the cells from proliferating or migrating," said senior author Dr. Aditi Das, professor of comparative biosciences at the University of Illinois. "These molecules could address multiple problems: cancer, inflammation, and pain."

"The dramatic increase indicated that these molecules were doing something to the cancer - but we did not know if it was harmful or good," said Dr. Das. "We asked, are they trying to stop the cancer, or facilitating it? So we studied the individual properties and saw that they are working against the cancer in several ways. Dietary consumption of omega-3 fatty acids can lead to the formation of these substances in the body and may have some beneficial effects. However, if you have cancer, you want something concentrated and fast acting. That is where the endocannabinoid epoxide derivatives come into play - you could make a concentrated dose of the exact compound that is most effective against the cancer. You could also mix this with other drugs such as chemotherapies."

Related Links:
University of Illinois

New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more