Novel Use of Nanoparticles Developed for Targeted Drug Delivery
|
By LabMedica International staff writers Posted on 26 Jun 2018 |

Image: Extracellular vesicle-like metal-organic framework nanoparticles are developed for the intracellular delivery of biofunctional proteins. The biomimetic nanoplatform can protect the protein cargo and overcome various biological barriers to achieve systemic delivery and autonomous release (Photo courtesy of the Zheng Laboratory, Pennsylvania State University).
The innovative use of metal-organic framework nanoparticles has enabled the development of a delivery system for therapeutic proteins that selectively targets tumor cells.
Metal-organic frameworks (MOFs) are a class of crystalline materials that consist of coordination bonds between transition-metal cations and multidentate organic linkers. MOFs are made by linking inorganic and organic units by strong bonds (reticular synthesis), and the structure of MOFs is characterized by an open framework that can be porous. MOFs are known for their extraordinarily high surface areas, tunable pore size, and adjustable internal surface properties. The flexibility with which the constituents’ geometry, size, and functionality can be varied has led to more than 20,000 different MOFs being reported and studied within the past decade.
Current strategies for transporting protein therapeutic agents face substantial challenges owing to various biological barriers, including susceptibility to protein degradation and denaturation, poor cellular uptake, and low transduction efficiency into the cytosol.
To counter these difficulties, investigators at Pennsylvania State University (State College, USA) developed a biomimetic nanoparticle platform for systemic and intracellular delivery of proteins. Using a biocompatible strategy, they caged guest proteins in the matrix of metal–organic frameworks with high efficiency (up to about 94%) and high loading content (the protein toxin gelonin at up to about 50 times those achieved by surface conjunction), and the nanoparticles were further decorated with tumor cell extracellular vesicle (EV) membranes with an efficiency as high as nearly 97%.
The nanoparticles, which were selectively transported to the tumor site due to the property of homotypic targeting engendered by the EV membrane coating, were taken up by the cancer cells through endocytosis. Once inside the cells, the higher acidity of the cancer cell’s intracellular transport vesicles degraded the MOF nanoparticles, which released the toxic protein into the cytosol and killed the cells.
Results of in vitro and in vivo studies published in the May 29, 2018, online edition of the Journal of the American Chemical Society revealed that the EV-like nanoparticles not only protected proteins against protease digestion and evaded immune system clearance but also selectively targeted homotypic tumor sites and promoted tumor cell uptake and autonomous release of the guest protein after internalization. Using this novel nanoparticle transport mechanism to deliver the bioactive therapeutic protein gelonin in a mouse model system significantly inhibited tumor growth and increased therapeutic efficacy14-fold.
“We designed a strategy to take advantage of the extracellular vesicles derived from tumor cells," said senior author Dr. Siyang Zheng, associate professor of biomedical and electrical engineering at Pennsylvania State University. "We remove 99% of the contents of these extracellular vesicles and then use the membrane to wrap our metal-organic framework nanoparticles. If we can get our extracellular vesicles from the patient, through biopsy or surgery, then the nanoparticles will seek out the tumor through a process called homotypic targeting. Our metal-organic framework has very high loading capacity, so we do not need to use a lot of the particles and that keeps the general toxicity low."
Related Links:
Pennsylvania State University
Metal-organic frameworks (MOFs) are a class of crystalline materials that consist of coordination bonds between transition-metal cations and multidentate organic linkers. MOFs are made by linking inorganic and organic units by strong bonds (reticular synthesis), and the structure of MOFs is characterized by an open framework that can be porous. MOFs are known for their extraordinarily high surface areas, tunable pore size, and adjustable internal surface properties. The flexibility with which the constituents’ geometry, size, and functionality can be varied has led to more than 20,000 different MOFs being reported and studied within the past decade.
Current strategies for transporting protein therapeutic agents face substantial challenges owing to various biological barriers, including susceptibility to protein degradation and denaturation, poor cellular uptake, and low transduction efficiency into the cytosol.
To counter these difficulties, investigators at Pennsylvania State University (State College, USA) developed a biomimetic nanoparticle platform for systemic and intracellular delivery of proteins. Using a biocompatible strategy, they caged guest proteins in the matrix of metal–organic frameworks with high efficiency (up to about 94%) and high loading content (the protein toxin gelonin at up to about 50 times those achieved by surface conjunction), and the nanoparticles were further decorated with tumor cell extracellular vesicle (EV) membranes with an efficiency as high as nearly 97%.
The nanoparticles, which were selectively transported to the tumor site due to the property of homotypic targeting engendered by the EV membrane coating, were taken up by the cancer cells through endocytosis. Once inside the cells, the higher acidity of the cancer cell’s intracellular transport vesicles degraded the MOF nanoparticles, which released the toxic protein into the cytosol and killed the cells.
Results of in vitro and in vivo studies published in the May 29, 2018, online edition of the Journal of the American Chemical Society revealed that the EV-like nanoparticles not only protected proteins against protease digestion and evaded immune system clearance but also selectively targeted homotypic tumor sites and promoted tumor cell uptake and autonomous release of the guest protein after internalization. Using this novel nanoparticle transport mechanism to deliver the bioactive therapeutic protein gelonin in a mouse model system significantly inhibited tumor growth and increased therapeutic efficacy14-fold.
“We designed a strategy to take advantage of the extracellular vesicles derived from tumor cells," said senior author Dr. Siyang Zheng, associate professor of biomedical and electrical engineering at Pennsylvania State University. "We remove 99% of the contents of these extracellular vesicles and then use the membrane to wrap our metal-organic framework nanoparticles. If we can get our extracellular vesicles from the patient, through biopsy or surgery, then the nanoparticles will seek out the tumor through a process called homotypic targeting. Our metal-organic framework has very high loading capacity, so we do not need to use a lot of the particles and that keeps the general toxicity low."
Related Links:
Pennsylvania State University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







