LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

In Vitro System Developed for Studying Lung Fibrosis

By LabMedica International staff writers
Posted on 05 Jun 2018
Print article
Image: Collagen from a healthy engineered lung tissue (Photo courtesy of Dr. Ruogang Zhao).
Image: Collagen from a healthy engineered lung tissue (Photo courtesy of Dr. Ruogang Zhao).
A novel lung-on-a-chip device was tested in a proof-of-principle study with results suggesting that this technology could be used to evaluate a variety of potential treatments for lung fibrosis.

Fibrosis is a severe health problem characterized by progressive stiffening of tissues, which causes organ malfunction and failure. A major bottleneck in developing new anti-fibrosis therapies is the lack of in vitro models that recapitulate dynamic changes in tissue mechanics during fibrogenesis.

To help overcome the lack of in vitro model systems for fibrosis, investigators at the University at Buffalo (NY, USA) created membranous human lung microtissues to model key biomechanical events occurred during lung fibrogenesis.

The investigators used microlithography to print microscale pillars of silicon-based organic polymer onto flexible plastic chips. Lung tissue cultured on top of the pillars behaved like functional alveoli. Fibrosis was induced by introducing a protein that caused healthy lung cells to become diseased, leading to the contraction and stiffening of the lung tissue.

The investigators reported in the May 25, 2018, online edition of the journal Nature Communications that by demonstrating these capabilities they had provided proof-of-principle evidence for using this fibrotic tissue array for multi-parameter, phenotypic analysis of the therapeutic efficacy of two anti-fibrosis drugs recently approved by the [U.S.] Food and Drug Administration. The test system confirmed that treatment with either Pirfenidone or Nintedanib reduced tissue contractility and prevented tissue stiffening and decline in tissue compliance.

"Obviously it is not an entire lung, but the technology can mimic the damaging effects of lung fibrosis. Ultimately, it could change how we test new drugs, making the process quicker and less expensive," said senior author Dr. Ruogang Zhao, assistant professor of biomedical engineering at the University at Buffalo.

Related Links:
University at Buffalo

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.