LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Long Non-coding RNA Reduces Arteriosclerosis Risk

By LabMedica International staff writers
Posted on 27 Feb 2018
Image: Mouse blood vessel with plaque accumulation (Photo courtesy of the Sallam Laboratory, University of California, Los Angeles).
Image: Mouse blood vessel with plaque accumulation (Photo courtesy of the Sallam Laboratory, University of California, Los Angeles).
A gene has been identified that produces a long non-coding RNA, which has been linked to the maintenance of cellular cholesterol balance and the development of arteriosclerosis.

Long non-coding RNAs (lncRNAs) are considered to be non-protein coding transcripts longer than 200 nucleotides. This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study. Their name notwithstanding, long non-coding RNAs (lncRNAs) have been found to actually encode synthesis of small polypeptides that can fine-tune the activity of critical cellular components.

Investigators at the University of California, Los Angeles (USA) have outlined a role for an lncRNA in modulating the cell type-specific actions of liver X receptors (LXRs). These are sterol-activated nuclear receptors that regulate the expression of genes involved in cholesterol homeostasis that have been causally linked to the pathogenesis of atherosclerosis.

The investigators reported in the February 12, 2018, online edition of the journal Nature Medicine that the lncRNA, MeXis, acted as an amplifier of LXR-dependent transcription of the gene Abca1, which is critical for regulation of cholesterol efflux. Mice lacking the gene for MeXis production showed reduced Abca1 expression in a tissue-selective manner. Furthermore, loss of MeXis in mouse bone marrow cells altered chromosome architecture at the Abca1 locus, impaired cellular responses to cholesterol overload, and accelerated the development of atherosclerosis. Mice lacking MeXis had almost twice as many blockages in their blood vessels compared to mice with normal MeXis levels. Furthermore, elevated MeXis levels improved the cells ability to remove excess cholesterol.

"What this study tells us is that lncRNAs are important for the inner workings of cells involved in the development of heart disease," said senior author Dr. Peter Tontonoz, professor of pathology and laboratory medicine at the University of California, Los Angeles. "Considering many genes like MeXis have completely unknown functions, our study suggests that further exploring how other long non-coding RNAs act will lead to exciting insights into both normal physiology and disease."

Related Links:
University of California, Los Angeles

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
ESR Analyzer
TEST1 2.0

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more