LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Phagocyte Mutation Interferes with Immune System Control

By LabMedica International staff writers
Posted on 24 Jan 2018
Image: A micrograph showing the opportunistic fungus Candida albicans (red) being engulfed by CX3CR1+ phagocytes (green) in the gut villi (blue) (Photo courtesy of Dr. Iliyan Iliev and Dr. Irina Leonardi, Weill Cornell Medicine).
Image: A micrograph showing the opportunistic fungus Candida albicans (red) being engulfed by CX3CR1+ phagocytes (green) in the gut villi (blue) (Photo courtesy of Dr. Iliyan Iliev and Dr. Irina Leonardi, Weill Cornell Medicine).
A mutation causing production of an inactive form of the CX3CR1 (C-X3-C motif chemokine receptor 1) protein in immune system mononuclear phagocytes has been identified as major contributor to the development of Crohn's disease and other types of inflammatory bowel disease (IBD).

Intestinal fungi are an important component of the gut microbiota, and recent studies have unveiled their potential in modulating host immune homeostasis and inflammatory disease. While CX3CR1+ mononuclear phagocytes (MNPs) had been identified as being essential for the initiation of innate and adaptive immune responses to intestinal fungi, and it was known that CX3CR1+ MNPs expressed antifungal receptors and activated antifungal responses, the mechanisms governing immunity to gut fungal communities (mycobiota) remained unknown.

To further understanding in this important area, investigators at Weill Cornell Medicine (New York, NY, USA) used chemical means to induce colitis in mice, and then infected them with fungi to determine whether the fungal cells would overgrow in the mouse gut and increase the severity of the illness.

Results published in the January 12, 2018, issue of the journal Science revealed that mice lacking gut CX3CR1+ phagocytes were more susceptible to intestinal disease than mice that had functional antifungal phagocytes. Antifungal drug treatment significantly reversed symptoms of the disease in mice lacking CX3CR1+ phagocytes, indicating that fungal overgrowth was responsible for the severe response.

The investigators analyzed phagocyte function in a group of more than 500 Crohn’s disease patients. They identified a missense mutation in the gene encoding CX3CR1 and found that it was associated with impaired antifungal responses.

"Our findings show that these CX3CR1+ cells are also essential for the initiation of immune responses to gut fungi, and regulate the composition of the gut mycobiome," said senior author Dr. Iliyan Iliev, assistant professor of microbiology and immunology at Weill Cornell Medicine. "Fungal DNA is hard to access and analyze using standard molecular biology techniques, but we have recently developed much better tools for doing so, and have now taken this further by visualizing fungal-host interactions in the gut. After discovering that fungi might be involved in the pathology of IBD, one of the big questions in the field has been how to identify patients who would benefit from antifungal co-therapy, and our finding suggests a way to do that."

Related Links:
Weill Cornell Medicine

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Pipette
Accumax Smart Series

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more