LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Use of Niclosamide to Deactivate Cancer Stem Cells

By LabMedica International staff writers
Posted on 06 Dec 2017
Image: Researchers developed nanoparticles that can target cancer stem cells (yellow), the rare cells within a tumor (blue) that can cause cancer to recur or spread (Photo courtesy of Dr. Dipanjan Pan, University of Illinois).
Image: Researchers developed nanoparticles that can target cancer stem cells (yellow), the rare cells within a tumor (blue) that can cause cancer to recur or spread (Photo courtesy of Dr. Dipanjan Pan, University of Illinois).
Nanoparticles designed to selectively deliver the drug niclosamide to cancer stem cells caused the cancer stem cells to lose their stem-like properties and rendered them less able to cause recurrence or metastasis.

Cancer stem cells are known to be controlled by pathways that are dormant in normal adult cells. An example is PTEN, which is a negative regulator of the transcription factor STAT3. STAT3 regulates genes that are involved in stem cell self-renewal and thus represents a novel therapeutic target.

In order to manipulate STAT3 expression, investigators at the University of Illinois (Champaign-Urbana, USA) synthesized nanoparticles from a biocompatible polymer and coated them with antibodies directed at the CD44 protein, which only appears on the surface of cancer stem cells. The nanoparticles were loaded with the widely used anti-parasite drug niclosamide, which deactivates the STAT3 pathway.

Results published in the November 14, 2017, online edition of the journal Molecular Cancer Therapeutics revealed that treatment with the nanoparticles caused cancer stem cells in culture to lose their stem like properties, making them less able to cause the cancer to recur or metastasize. In addition, there was a significant decrease in overall cancer cell growth, both in the cell cultures and in mice.

"I call them "GPS-enabled nanoparticles," because they seek out only the cells that have cancer stem cell properties. Then they latch onto the cells and deliver the drug," said senior author Dr. Dipanjan Pan, professor of bioengineering at the University of Illinois. "To the best of our knowledge, this is the first demonstration of delivering cancer stem-cell-targeted therapy with a nanoparticle. We purposely used an extremely inexpensive drug. It is generic and we can mass produce it on a very large scale. The nanoparticles are a polymer that we can make on a large scale – it is highly defined and consistent, so we know exactly what we are delivering. The rest of the process is just self-assembly."

"It is critical to administer treatments for already-developed tumors; however, long-term survival and not allowing it to come back are equally important," said Dr. Pan. "We want to destroy the cells that are hidden in the tissue and cause the cancer to come back or spread to other parts of the body."

Related Links:
University of Illinois

Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Alcohol Testing Device
Dräger Alcotest 7000
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more