LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Hydrogel-Based Model System Mimics Cellular Signaling Processes

By LabMedica International staff writers
Posted on 07 Nov 2017
Image: A synthetic tissue releases therapeutic proteins (maroon/yellow) once triggered by metabolites (sandy brown). The metabolites contact with the double-stranded DNA (red/blue) to release the red triggering DNA. The triggering DNA activates the aptamer (cyan)-protein complex to release the protein (Photo courtesy of Xin Zou and Jinping Lai / Pennsylvania State University).
Image: A synthetic tissue releases therapeutic proteins (maroon/yellow) once triggered by metabolites (sandy brown). The metabolites contact with the double-stranded DNA (red/blue) to release the red triggering DNA. The triggering DNA activates the aptamer (cyan)-protein complex to release the protein (Photo courtesy of Xin Zou and Jinping Lai / Pennsylvania State University).
An artificial hydrogel-based model system responds to chemical signals by binding or releasing bound proteins in a manner similar to processes occurring in living cells.

A variety of hydrogels have been synthesized for controlling the release of signaling molecules in applications such as drug delivery and regenerative medicine. However, it remains challenging to synthesize hydrogels with the ability to control the release of signaling molecules sequentially or periodically under physiological conditions as living cells do in response to the variation of metabolism.

To meet this challenge, investigators at Pennsylvania State University (University Park, USA) prepared a novel hydrogel from polyethylene glycol that was infused with two different types of DNA. One was an aptamer, a short strand of DNA that bound the molecules to be released from the hydrogel. The other was a double-stranded helical molecule of DNA designed to react to the metabolic signal and initiate the chemical release process.

The investigators reported in the November 2017 issue of the journal Chemical Science that they had used adenosine as the low molecular weight signaling molecule and platelet-derived growth factor (PDGF) as the signaling protein to be released. The investigators analyzed the adenosine-PDGF hydrogel system and found that without the low molecular weight signal molecule, the amount of signaling protein released by the hydrogel was very small. When adenosine was added, the hydrogel released about 28% percent of the target PDG signaling protein. Other molecules similar to adenosine, such as guanosine and uridine did not cause the release of PDGF from the hydrogel.

"We have only done this recently in a petri dish," said senior author Dr. Yong Wang, professor of biomedical engineering at Pennsylvania State University. "We did tests using smooth muscle cells, but we would of course like to do this in a living animal. Eventually we would like to use this system for controlled drug delivery and other biological actions."

Related Links:
Pennsylvania State University

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more