We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Diseased Liver Model Facilitates Search for AAT Deficiency Cure

By LabMedica International staff writers
Posted on 02 Nov 2017
Image: A photomicrograph of a liver biopsy from a patient with alpha-1 antitrypsin deficiency. The PAS with diastase stain shows the diastase-resistant pink globules that are characteristic of this disease (Photo courtesy of Wikimedia Commons).
Image: A photomicrograph of a liver biopsy from a patient with alpha-1 antitrypsin deficiency. The PAS with diastase stain shows the diastase-resistant pink globules that are characteristic of this disease (Photo courtesy of Wikimedia Commons).
Researchers have developed a new humanized liver mouse model with the mutation that causes alpha-1 antitrypsin deficiency in order to determine whether it is possible to cure the disease by repopulating the defective liver with gene edited healthy cells.

In alpha-1 antitrypsin (AAT) deficiency, one missense mutation results in impaired secretion of AAT. In most patients, lung damage occurs due to a lack of AAT-mediated protection of lung elastin from neutrophil elastase. In some patients, accumulation of misfolded PiZ-mutant AAT protein in the liver triggers hepatocyte injury leading to inflammation and cirrhosis.

Investigators at the University of Massachusetts Medical School (Worcester, USA) hypothesized that correcting the mutant defect in hepatocytes would confer a selective advantage for repopulation of hepatocytes within an intact liver. To test this hypothesis they used a combination of RNA interference with gene augmentation, using an RNAi-resistant version of the alpha-1 antitrypsin gene.

The investigators reported in the September 25, 2017, online edition of the journal Molecular Therapy that this gene editing approach led to a selective advantage of edited hepatocytes due to silencing of the mutant protein, augmenting normal AAT production, and improvement of the liver pathology.

"This is a significant win for gene editing," said senior author Dr. Christian Mueller, associate professor of pediatrics at the University of Massachusetts Medical School. "If healthy or gene-corrected liver cells have a selective advantage over cells with the alpha-1 antitrypsin deficiency mutation, then it is possible that by treating only a few cells, those healthy cells will "out compete" the diseased cells. And because liver cells regenerate easily, this can create a big advantage therapeutically. What we have here is a proof of concept that this approach would potentially help patients, and for very young patients with actively growing livers that could potentially be treated early in life, this could be very meaningful"

"Gene editing with alpha-1 antitrypsin deficiency alone can do a lot of what CRISPR/Cas9 [currently the most widely-studied gene editing tool] does, just at a lower efficiency," said Dr. Mueller. "In cases where there is a competitive advantage, only a low-level of editing is necessary, allowing the corrected cells to expand and, in this case, both prevent liver disease and make therapeutic levels of the normal alpha-1 protein."

Related Links:
University of Massachusetts Medical School

New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology Analyzer
Medonic M32B
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more