LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

DNA-Based Vaccine Shown Safe and Effective

By LabMedica International staff writers
Posted on 16 Oct 2017
Image: A digitally colorized transmission electron micrograph (TEM) of Zika (Photo courtesy of the CDC).
Image: A digitally colorized transmission electron micrograph (TEM) of Zika (Photo courtesy of the CDC).
A team of vaccine developers used an advanced electroporation method to deliver and evaluate a new generation DNA-based vaccine designed to protect against Zika virus (ZIKV) infection.

Investigators at the University of Pennsylvania (Philadelphia, USA), Inovio Pharmaceuticals (Plymouth Meeting, PA, USA), GeneOne Life Science (Seoul, Korea), and The Wistar Institute (Philadelphia, PA, USA) collaborated in this effort. They used Inovio's proprietary electroporation device, Cellectra, to vaccinate two groups of 20 participants with two different doses of GeneOne Life Science's GLS-5700 DNA-based vaccine candidate.

Electroporation uses controlled, millisecond electrical pulses to create temporary pores in the cell membrane and allow dramatic cellular uptake of a synthetic DNA immunotherapy previously injected into muscle or skin. The cellular machinery then uses the DNA’s instructions to produce one or more proteins associated with the targeted disease. These foreign protein(s), or antigen(s), mimic the presence of an actual pathogen and induce an immune response to provide future protection against the pathogen or eliminate cells infected with an infectious disease or cancer.

In the current study, the GLS-5700 DNA vaccine, which encodes the ZIKV pre-membrane and envelope proteins, was administered by electroporation to two groups of 20 participants each. The participants received either one milligram or two milligrams of vaccine at baseline, four weeks, and 12 weeks.

Results published in the October 4, 2017, online edition of the New England Journal of Medicine revealed that by two weeks after the final dose all study participants had developed Zika-specific antibodies and 80% had produced significant neutralizing antibodies against the virus. Furthermore, serum from the study participants was able to protect immunocompromised mice from developing the disease after infection with Zika virus, indicating that the vaccine-induced antibodies could prevent infection in vivo.

By the 14-week point, no serious adverse events had been reported, although local reactions at the vaccination site (e.g., injection-site pain, redness, swelling, and itching) occurred in approximately 50% of the participants.

"Synthetic DNA vaccines are an ideal approach for emerging infectious diseases like Zika," said contributing author Dr. David B. Weiner, executive vice president of The Wistar Institute. "This new generation of DNA vaccines can be designed and manufactured rapidly, they appear to be highly predictable for the generation of immunity in humans, have significant conceptual safety advantages, and they are more stable than most traditional vaccines, making them exceptionally practical to distribute during outbreaks, especially in regions where resources are limited and we need to be able to respond quickly to curb an emerging epidemic."

Related Links:
University of Pennsylvania
Inovio Pharmaceuticals
GeneOne Life Science
The Wistar Institute
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Gold Member
Hematology Analyzer
Medonic M32B

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more