LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Combined Approach Cures Bladder Cancer in Model

By LabMedica International staff writers
Posted on 28 Aug 2017
Image: A scanning electron micrograph (SEM) of a gold nanostar. The nanostar\'s size caused it to accumulate within tumors, where researchers used infrared light to heat it and destroy cancerous growths (Photo courtesy of Dr. Tuan Vo-Dinh, Duke University).
Image: A scanning electron micrograph (SEM) of a gold nanostar. The nanostar\'s size caused it to accumulate within tumors, where researchers used infrared light to heat it and destroy cancerous growths (Photo courtesy of Dr. Tuan Vo-Dinh, Duke University).
A novel anticancer "photothermal immunotherapy" technique that used lasers and gold nanostars to heat up and destroy tumors in combination with an immunotherapeutic drug cured and immunized mice against bladder cancer in a small proof-of-concept study.

Investigators at Duke University (Durham, NC, USA) had previously described the development of plasmonic gold nanostar particles, which had multiple sharp spikes that were able to capture laser energy more efficiently. In the current study, gold nanostar therapy was combined with an immunotherapeutic drug that inhibited the activity of PD-L1 (Programmed death-ligand 1), which would otherwise disable cancer-destroying T-cells.

In the current proof-of-concept study, MB49 bladder cancer cells were injected into the hind legs of a group of mice. After tumors began to grow, the animals were treated in one leg only with gold nanostars and laser heating, nanostars plus PD-L1 inhibitor, or PD-L1 inhibitor alone. A group of control animals were not treated.

Results published in the August 17, 2017, online edition of the journal Scientific Reports revealed that animals receiving no treatment rapidly died from cancer, as did those receiving only the gold nanostar phototherapy, since the treatment did nothing to affect the tumor growing in the untreated leg. In contrast, some animals responded well to the immunotherapy alone, with the drug slowing growth of both tumors, but none survived more than 49 days. However, animals in the group treated with both the immunotherapy and the gold nanostar phototherapy fared much better, with two of the five mice surviving more than 55 days.

The investigators referred to the two-pronged treatment approach as Synergistic Immuno Photothermal Nanotherapy (SYMPHONY). Using this combination of immune-checkpoint inhibition and plasmonic gold nanostar–mediated photothermal therapy, they were able to achieve complete eradication of primary treated tumors and distant untreated tumors in some mice implanted with the MB49 bladder cancer cells. Delayed rechallenge of mice cured by SYMPHONY with injections of MB49 cancer cells did not lead to new tumor formation after 60 days observation, indicating that SYMPHONY treatment induced effective long-lasting immunity against MB49 cancer cells.

"The nanostar spikes work like lightning rods, concentrating the electromagnetic energy at their tips," said senior author Dr. Tuan Vo-Dinh, professor of chemistry and biomedical engineering at Duke University. "We have experimented with these gold nanostars to treat tumors before, but we wanted to know if we could also treat tumors we did not even know were there or tumors that have spread throughout the body. When a tumor dies, it releases particles that trigger the immune system to attack the remnants. By destroying the primary tumor, we activated the immune system against the remaining cancerous cells, and the immunotherapy prevented them from hiding."

"The ideal cancer treatment is non-invasive, safe, and uses multiple approaches," said Dr. Vo-Dinh. "We also aim at activating the patient's own immune system to eradicate residual metastatic tumors. If we can create a long-term anticancer immunity, then we would truly have a cure."

Related Links:
Duke University

Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Sample Transportation System
Tempus1800 Necto

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more