LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Editing Used to Repair Mutations in Embryos

By LabMedica International staff writers
Posted on 17 Aug 2017
Image: A sequence of photomicrographs showing the development of embryos after co-injection of a gene-correcting enzyme and sperm from a donor with a genetic mutation known to cause hypertrophic cardiomyopathy (Photo courtesy of Oregon Health & Science University).
Image: A sequence of photomicrographs showing the development of embryos after co-injection of a gene-correcting enzyme and sperm from a donor with a genetic mutation known to cause hypertrophic cardiomyopathy (Photo courtesy of Oregon Health & Science University).
The CRISPR/Cas9 gene editing tool was used to correct a mutation in the DNA of a human embryo, and the problem of mosaicism was avoided by carrying out the gene editing step while the embryo was still a single-cell fertilized egg.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs.

Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

Investigators at Oregon Health & Science University (Portland, USA) sought to investigate human gamete and embryo DNA repair mechanisms activated in response to CRISPR/Cas9-induced double-strand breaks (DSBs). Their intent was to demonstrate the proof-of-principle that heterozygous gene mutations could be corrected in human gametes or early embryos.

In the August 2, 2017, online edition of the journal Nature they described the correction of the heterozygous MYBPC3 mutation - the cause of hypertrophic cardiomyopathy (HCM), a common genetic heart disease that can cause sudden cardiac death and heart failure - in human preimplantation embryos. This repair depended on precise CRISPR/Cas9-based targeting accuracy and high homology-directed repair efficiency that was obtained by activating an endogenous, germline-specific DNA repair response. Induced DSBs at the mutant paternal allele were predominantly repaired using the homologous wild-type maternal gene instead of a synthetic DNA template.

By modulating the cell cycle stage at which the DSB was induced, the investigators were able to avoid mosaicism in cleaving embryos and achieved a high yield of homozygous embryos carrying the wild-type MYBPC3 gene without evidence of off-target mutations. The solution to the mosaicism problem was to minimize their occurrence by the co-injection of sperm and CRISPR/Cas9 components into metaphase II oocytes.

"Every generation on would carry this repair because we have removed the disease-causing gene variant from that family's lineage," said senior author Dr. Shoukhrat Mitalipov, director of the Center for Embryonic Cell and Gene Therapy at Oregon Health & Science University. "By using this technique, it is possible to reduce the burden of this heritable disease on the family and eventually the human population."

Related Links:
Oregon Health & Science University

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Laboratory Software
ArtelWare

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more