Imaging Technique Reveals 3D Structure of DNA and Chromatin
By LabMedica International staff writers Posted on 09 Aug 2017 |

Image: Chromatin structure determines the function of the human genome. To visualize chromatin within intact cells, a method called ChromEM stains DNA and paints chromatin with a metal dust. The metal-coated chromatin is imaged by electron microscopy to generate a three-dimensional volume that reveals chromatin structure and organization. A single slice from the three-dimensional volume is shown here. Detailed chromatin structures are seen in a ChromEM stained cell (right panel, dark structures), but not in an unstained cell (left panel) (Photo courtesy of Dr. Clodagh O\'Shea, Salk Institute for Biological Studies and Dr. Mark Ellisman, University of California, San Diego).
Researchers have developed a method for visualizing the three-dimensional structure of chromatin, which explains how the two meter long molecular chain of genomic DNA fits inside the nuclei of human cells.
Chromatin is a complex of macromolecules consisting of DNA, protein, and RNA. The primary functions of chromatin are to package DNA into a more compact, denser shape; to reinforce the DNA macromolecule to allow mitosis; to prevent DNA damage; and to control gene expression and DNA replication. Up to now there has been no method that enabled DNA and chromatin ultrastructure to be visualized and reconstructed unambiguously through the large three-dimensional volumes of intact cells.
To visualize and reconstruct chromatin ultrastructure and three-dimensional organization, investigators at the University of California, San Diego (USA) and the Salk Institute for Biological Studies (La Jolla, CA, USA) developed ChromEMT, a method that combined electron microscopy tomography (EMT) with a labeling method (ChromEM) that selectivity enhanced the contrast of DNA. This technique exploited a fluorescent dye that bound to DNA, and upon excitation, catalyzed the deposition of diaminobenzidine polymers on the surface, enabling chromatin to be visualized with OsO4 in an EM (electron microscope). Advanced multi-tilt EMT revealed the chromatin ultrastructure and three-dimensional packing of DNA in both human interphase cells and mitotic chromosomes.
The investigators reported in the July 28, 2017, online edition of the journal Science that ChromEMT enabled the ultrastructure of individual chromatin chains, heterochromatin domains, and mitotic chromosomes to be resolved in serial slices and their three-dimensional organization to be visualized as a continuum through large nuclear volumes in situ. ChromEMT stained and detected 30-nanometer fibers in nuclei purified from hypotonically lysed chicken erythrocytes. Furthermore, the investigators showed that chromatin was a disordered five- to 24-nanometer-diameter curvilinear chain that was packed together at different three-dimensional concentration distributions in interphase and mitosis. Chromatin chains had many different particle arrangements and bent at various lengths to achieve structural compaction and high packing densities.
Senior author Dr. Clodagh O'Shea, an associate professor at the Salk Institute for Biological Studies, said, "The findings reveal that nucleus DNA assembles five to 24-nanometer-diameter chromatin chains in a diversity of three-dimensional conformations and motifs. In contrast to ordered and rigid fibers, chromatin is a flexible chain that can collapse and pack together into three-dimensional domains that have a wide range of different concentration densities. This provides exciting new insights into how different gene sequences, interactions and epigenetic modifications can be integrated at the level of chromatin structure to regulate gene expression and inherited and maintained through cell division."
Related Links:
University of California, San Diego
Salk Institute for Biological Studies
Chromatin is a complex of macromolecules consisting of DNA, protein, and RNA. The primary functions of chromatin are to package DNA into a more compact, denser shape; to reinforce the DNA macromolecule to allow mitosis; to prevent DNA damage; and to control gene expression and DNA replication. Up to now there has been no method that enabled DNA and chromatin ultrastructure to be visualized and reconstructed unambiguously through the large three-dimensional volumes of intact cells.
To visualize and reconstruct chromatin ultrastructure and three-dimensional organization, investigators at the University of California, San Diego (USA) and the Salk Institute for Biological Studies (La Jolla, CA, USA) developed ChromEMT, a method that combined electron microscopy tomography (EMT) with a labeling method (ChromEM) that selectivity enhanced the contrast of DNA. This technique exploited a fluorescent dye that bound to DNA, and upon excitation, catalyzed the deposition of diaminobenzidine polymers on the surface, enabling chromatin to be visualized with OsO4 in an EM (electron microscope). Advanced multi-tilt EMT revealed the chromatin ultrastructure and three-dimensional packing of DNA in both human interphase cells and mitotic chromosomes.
The investigators reported in the July 28, 2017, online edition of the journal Science that ChromEMT enabled the ultrastructure of individual chromatin chains, heterochromatin domains, and mitotic chromosomes to be resolved in serial slices and their three-dimensional organization to be visualized as a continuum through large nuclear volumes in situ. ChromEMT stained and detected 30-nanometer fibers in nuclei purified from hypotonically lysed chicken erythrocytes. Furthermore, the investigators showed that chromatin was a disordered five- to 24-nanometer-diameter curvilinear chain that was packed together at different three-dimensional concentration distributions in interphase and mitosis. Chromatin chains had many different particle arrangements and bent at various lengths to achieve structural compaction and high packing densities.
Senior author Dr. Clodagh O'Shea, an associate professor at the Salk Institute for Biological Studies, said, "The findings reveal that nucleus DNA assembles five to 24-nanometer-diameter chromatin chains in a diversity of three-dimensional conformations and motifs. In contrast to ordered and rigid fibers, chromatin is a flexible chain that can collapse and pack together into three-dimensional domains that have a wide range of different concentration densities. This provides exciting new insights into how different gene sequences, interactions and epigenetic modifications can be integrated at the level of chromatin structure to regulate gene expression and inherited and maintained through cell division."
Related Links:
University of California, San Diego
Salk Institute for Biological Studies
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
New Genetic Tool Analyzes Umbilical Cord Blood to Predict Future Disease
Children are experiencing metabolic problems at increasingly younger ages, placing them at higher risk for serious health issues later in life. There is a growing need to identify this risk from birth... Read more
Spinal Fluid Biomarker for Parkinson’s Disease Offers Early and Accurate Diagnosis
Parkinson’s disease is a neurodegenerative condition typically diagnosed at an advanced stage based on clinical symptoms, primarily motor disorders. However, by this time, the brain has already undergone... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more
World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
Thyroid cancer is one of the most common cancers worldwide, and its precise management typically relies on two primary systems: (1) the 8th edition of the American Joint Committee on Cancer (AJCC) or ... Read more
Breakthrough Diagnostic Approach to Significantly Improve TB Detection
Tuberculosis (TB) remains the deadliest infectious disease globally, with 10.8 million new cases and 1.25 million deaths reported in 2023. Early detection through effective screening is crucial in identifying... Read more
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more