LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Transcription Factor Deficit Spurs Tumor Development

By LabMedica International staff writers
Posted on 28 Jun 2017
Image: A photomicrograph of human breast cancer line MCF-7 cells (Photo courtesy of Wikimedia Commons).
Image: A photomicrograph of human breast cancer line MCF-7 cells (Photo courtesy of Wikimedia Commons).
A team of British cancer researchers found that the transcription factor proline-rich homeodomain protein (PRH/HHEX) played a tumor suppressive role in the breast, and they provided an explanation for the finding that low PRH mRNA levels were associated with a poor prognosis in breast cancer.

Breast tumors progress from hyperplasia to ductal carcinoma in situ (DCIS) and invasive breast carcinoma (IBC). In order to study the role of the PRH/HEX transcription factor in this progression, investigators at the University of Birmingham (United Kingdom) adapted a population of human breast cancer MCF-7 cells to under or over produce PRH/HEX.

They reported in the June 12, 2017, online edition of the journal Oncogenesis that transcriptionally inactive phosphorylated PRH was elevated in DCIS and IBC compared with tissues in the normal breast. To determine the consequences of PRH loss of function in breast cancer cells, they induced PRH depletion in their line of MCF-7 cells. They showed that PRH depletion resulted in increased MCF-7 cell proliferation in part at least due to increased vascular endothelial growth factor signaling. Moreover, they demonstrated that PRH depletion increased the formation of breast cancer cells with cancer stem cell-like properties.

In a mouse model, PRH overexpression inhibited the growth of mammary tumors. Taken together, these data indicated that PRH played a tumor suppressive role in the breast, and they provided an explanation for the finding that low PRH mRNA levels were associated with a poor prognosis in breast cancer.

Senior author Dr. Padma Sheela Jayaraman, senior lecturer in cancer biology at the University of Birmingham, said, "PRH is a protein that controls and regulates when genes are switched on or off. However, prior to our research, the role of this protein in breast cancer has been poorly understood. In the laboratory, we found that when PRH protein levels are reduced in a breast tumor the cells are more able to divide, speeding up the progression of the tumor. Moreover, we identified some of the genes which are regulated by PRH and specifically contribute to the increased cell division."

"We made the significant finding that high levels of PRH actually blocked the formation of the tumors, therefore our data suggests that PRH can block tumor formation in some breast cancers," said Dr. Jayaraman. "We propose that monitoring PRH protein levels or activity in patients with breast cancer could be particularly important for assessing their prognosis. In addition, since PRH is known to be important in multiple cell types, this work has important implications for other types of cancer."

Related Links:
University of Birmingham

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Alcohol Testing Device
Dräger Alcotest 7000
Silver Member
PCR Plates
Diamond Shell PCR Plates

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more