We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

X-Ray Crystallography Findings Aid Discovery of New Drugs

By LabMedica International staff writers
Posted on 18 Apr 2017
Print article
Image: Crystal structures of Mtb RNAP bound to rifampin (left) and Mtb RNAP bound to an AAP (right) show the Mtb RNAP interactions. Gray ribbons, Mtb RNAP backbone; gray, cyan, and green sticks, Mtb RNAP, rifampin, and AAP carbon atoms; red and blue sticks, oxygen and nitrogen atoms; green mesh, mFo-Fc electron density omit map; BH, Mtb RNAP bridge helix (Photo courtesy of Wei Lin and Richard H. Ebright, Rutgers University).
Image: Crystal structures of Mtb RNAP bound to rifampin (left) and Mtb RNAP bound to an AAP (right) show the Mtb RNAP interactions. Gray ribbons, Mtb RNAP backbone; gray, cyan, and green sticks, Mtb RNAP, rifampin, and AAP carbon atoms; red and blue sticks, oxygen and nitrogen atoms; green mesh, mFo-Fc electron density omit map; BH, Mtb RNAP bridge helix (Photo courtesy of Wei Lin and Richard H. Ebright, Rutgers University).
Sensitive X-ray crystallography techniques were used to determine the three-dimensional (3D) molecular structure of the Mycobacterium tuberculosis enzyme RNA polymerase (Mtb RNAP) alone and when bound to the present first-line anti-tuberculosis drug rifampin.

M. tuberculosis (Mtb) is the causative agent of tuberculosis (TB), which annually kills about 1.8 million people worldwide.

Rifampin is used for the treatment of tuberculosis in combination with other antibiotics, such as pyrazinamide, isoniazid, and ethambutol. For the treatment of tuberculosis, rifampin is administered daily for at least six months. Combination therapy is utilized both to prevent the development of resistance and to shorten the length of treatment. Rifampin inhibits bacterial DNA-dependent RNA synthesis by inhibiting bacterial DNA-dependent RNA polymerase. Resistance to rifampin develops quickly when it is used without another antibiotic. Efforts to circumvent the development of resistance to rifampin have been hampered by the absence of structural information for Mtb RNAP, making rational, structure-based drug discovery for Mtb RNAP impossible.

In the current study, investigators at Rutgers University used X-ray crystallography to establish the crystal structures of Mtb RNAP, alone and in complex with rifampin at 3.8 - 4.4 Angstrom resolution. Results published in April 6, 2017, online edition of the journal Molecular Cell revealed an Mtb-specific structural module of Mtb RNAP and established that rifampin functioned by a steric-occlusion mechanism that prevented extension of RNA.

The investigators also reported the discovery of non-rifampin-related compounds -Nalpha-aroyl-N-aryl-phenylalaninamides (AAPs) - that potently and selectively inhibited Mtb RNAP and Mtb growth, and they described crystal structures of Mtb RNAP in complex with AAPs. AAPs were found to bind to a different site on Mtb RNAP than rifampin, exhibited no cross-resistance with rifampin, functioned additively when co-administered with rifampin, and suppressed resistance emergence when co-administered with rifampin.

"The structure of Mtb RNAP has been the "Holy Grail" for TB drug discovery targeting Mtb RNAP," said senior author Dr. Richard H. Ebright, professor of chemistry and chemical biology at Rutgers University. "AAPs represent an entirely new class of Mtb RNAP inhibitors and are, without question, the most promising Mtb RNAP inhibitors for anti-TB drug development since rifampin. We are very actively pursuing AAPs. We have synthesized and evaluated more than 600 novel AAPs and have identified AAPs with high potencies and favorable intravenous and oral pharmacokinetics."

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
High Performance Centrifuge
CO336/336R
New
Piezoelectric Micropump
Disc Pump

Print article

Channels

Clinical Chemistry

view channel
Image: The study demonstrated that electric-field molecular fingerprinting can probe cancer (Photo courtesy of ACS Central Science, 2025, 10.1021/acscentsci.4c02164)

New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma

Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read more

Molecular Diagnostics

view channel
Image: The test monitors blood levels of DNA fragments released by dying tumor cells (Photo courtesy of 123RF)

Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer

Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.