LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanoscale Device Developed for Separation of NA Mixtures

By LabMedica International staff writers
Posted on 24 Mar 2017
Image: Ultrafast electrophoretic microRNA extraction from a nucleic acids mixture using quartz nanopillars of 250-nanometer diameter arrayed inside a 100-nanommeter high nanoslit region (Photo courtesy of Dr. Noritada Kaji, Nagoya University).
Image: Ultrafast electrophoretic microRNA extraction from a nucleic acids mixture using quartz nanopillars of 250-nanometer diameter arrayed inside a 100-nanommeter high nanoslit region (Photo courtesy of Dr. Noritada Kaji, Nagoya University).
A team of Japanese engineers has developed a nanoscale device for the rapid separation of microRNA (miRNA) from mixtures of miRNA, RNA, and DNA.

MicroRNAs are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Investigators at Nagoya University have developed an innovative nanoscale device that can rapidly separate microRNA from DNA/RNA mixtures obtained from cells.

The device was fabricated by electron beam lithography on a quartz substrate to contain a 25×100 micrometer array of "nanopillars" (small columns with a diameter of 250 nanometers and height of 100 nanometers) in shallow "nanoslits" with a height of 100 nanometers. This separation approach using a top-down fabrication technique enabled the precise control of DNA conformation during electrophoresis and demonstrated that the geometric pattern of the nanopillar array could control the separation mode and enhance the throughput. The square pattern improved the resolution of separation proportionally to the applied electric field and transferred the larger DNA molecules more rapidly than it transferred the smaller molecules of miRNA. Combining nanoslit structures provided an entropic trapping effect and improved the speed of separation and resolution.

Feasibility studies, using a mixture of total RNA and genomic DNA, were performed to elucidate whether this technique was applicable over a wide size range of nucleic acids. Results published in the March 8, 2017, online edition of the journal Scientific Reports revealed that a mixture of genomic DNA, total RNA, and miRNA from HeLa cells could be separated within 100 microseconds.

"We believe that the nanobiodevice separates microRNA from mixtures through a combination of two different physical behaviors of confined polymers in the nanopoillar array, non-equilibrium transport and entropic trapping," said contributing author Dr. Noritada Kaji, associate professor of engineering at Nagoya University. "The applied electric field combines with the unique nanostructure of the nanobiodevice to generate a strong electric force that induces rapid concentration and separation."

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more